0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是 POWELL 透镜?

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-12-24 06:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

wKgZO2dp452ARsFCAAJpK-nSyDs195.jpg

图 1:利用激光线的机器视觉系统的基本元件。当摄像头以与光束成一定角度观察时,工件高度的变化在摄像头的探测器上表现为激光线位置的移动。

大多数激光器发出的光束横截面为圆形或椭圆形。当这样的光束照射到平面上时,会形成一个小圆点。但在许多情况下,激光线更为有用。例如,在建筑、制造装配流程中,甚至在 CAT 扫描仪和其他医学成像系统中对患者进行定位时,投射激光线通常用作准直参考。它们还可用于在流式细胞术中进行光束整形。

激光线的一个重要商业应用是机器视觉系统。这些系统用于自动测量零件的形状和尺寸。这类机器视觉系统的基本元件如图 1 所示。

激光器在工件上投射出一条线,而摄像头从一个角度观察这条投射线。然后利用几何公式计算出从摄像头视角看到的线位移,从而计算出物体的高度轮廓。

这种技术常用于检测在传送带上移动的工件。激光线保持静止,而工件穿过激光线。这样,激光线就可以扫描工件的整个长度。这样就可以测量零件的整个三维形状轮廓。

对于此类机器视觉系统,如果激光线在整个长度上具有均匀的强度,则会非常有用。这可以简化图像分析工作,并从中获取准确的量化数据。

不过,大多数激光器都能产生所谓的”高斯光束“,即光束中心的亮度远高于边缘。高斯光束有一个独特的特性,那就是当它们聚焦、扩大或使用传统光学技术以其他方式重新塑形时,仍能维持高斯强度曲线。实际上很难摆脱它的这一特性。

POWELL 透镜

Powell 透镜(以其创始人 Ian Powell 博士的名字命名)是一种非常巧妙而有效的方法,可以将高斯光束转化为均匀强度激光线。Powell 透镜是一种非球面圆柱透镜。

Powell 透镜将圆形激光束在一个维度上呈扇形展开。这样,当光束击中平面时,就会形成一条线,而不是一个点。

Powell 透镜的形状经过专门设计,用于将激光从光束中心转向边缘。这样就消除了中心”热点“,并将高斯光束转化为强度均匀的光束,也称为”帽子“轮廓。

图中显示了 Powell 透镜的横截面形状,并将其工作原理与传统的柱面透镜进行了比较(后者也能产生一条线,但保持了高斯强度分布)。

wKgZPGdp456ANawLAADcbXfVENU048.jpg

图 2. Powell 透镜(左)与传统柱面透镜(右)比较。两种光学器件都将圆形高斯激光束转换为发散光扇,在其投射的任何表面上形成一条线。Powell 透镜将光线从光束中心转移到边缘,以产生均匀强度的光束,而柱面透镜则保持光束的高斯分布,因此其光束在中心更亮。

除了 Powell 透镜,其他方法也可以将高斯光束转化为均匀线,包括衍射光学元件和微透镜阵列。但它们的光学效率都达不到 Powell 透镜的水平(这意味着最终会进入激光线的激光光束较少),也无法提供强度均匀的光束。

Powell 透镜的另一个有用特性是对输入波长相当不敏感。与衍射光学元件相比,这是一个很大的优势,因为衍射光学元件对波长非常敏感。

凭借这种特性,Powell 透镜可以与半导体激光器相结合,形成非常紧凑低成本激光线发生器。不同半导体激光器设备的波长通常会出现显著变化,而且其带宽和波长还会随温度变化。但 Powell 透镜对波长不敏感,因此可与半导体激光器配合使用,而无需进行波长选择或分选。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 透镜
    +关注

    关注

    0

    文章

    65

    浏览量

    18366
  • Powell
    +关注

    关注

    0

    文章

    3

    浏览量

    6440
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    VirtualLab:医用衍射透镜

    混合透镜结合了经典折射元件和衍射结构的优点,因此在不同光学应用中成为一种很有前景的方法,例如用于治疗白内障的人工晶状体植入。特别是,折射率和衍射表面的相反色散符号使色差的校正成为可能。 为了精确地
    发表于 06-12 08:54

    OCAD应用:单透镜与双胶合透镜结构组合设计

    构成光学系统最基础的结构单元都离不开单透镜、胶合透镜以及各种形式反射棱镜的组合。所有的光学系统进行初始设计阶段都必然要从该类结构单元设计为起点。其中透镜单元中最基础的则是单透镜、双胶合
    发表于 06-06 08:55

    VirtualLab Fusion:平面透镜|从光滑表面到菲涅尔、衍射和超透镜的演变

    摘要 在光学设计中,通常使用两种介质之间的光滑界面来塑造波前。球面和非球面界面用于在成像系统中创建透镜和反射镜。在非成像光学中,自由曲面被用来故意引入特定的像差以塑造光的能量分布。在每种情况下,表面
    发表于 05-15 10:36

    PanDao:确定胶合成本(将透镜组装成双胶合透镜、三胶合透镜等)

    PanDao的胶合工艺涵盖两个光学表面的胶合,例如将透镜B(LB)精密胶合至透镜A(LA)表面: 当前,胶合工艺仅适用于球面与平面玻璃光学表面。请按以下步骤操作: a) 将透镜A加载至PanDao
    发表于 05-07 08:48

    PanDao:输入透镜参数

    若要在PanDao官网上进行光学元件制造链优化分析,就需在指定界面输入元件的关键参数值及公差范围。 在PanDao中输入透镜参数的五种方法如下: a) 导入由光学设计软件保存的透镜数据 b) 导入
    发表于 05-06 08:47

    VirtualLab应用:医用衍射透镜

    混合透镜结合了经典折射元件和衍射结构的优点,因此在不同光学应用中成为一种很有前景的方法,例如用于治疗白内障的人工晶状体植入。特别是,折射率和衍射表面的相反色散符号使色差的校正成为可能。 为了精确地
    发表于 04-01 09:37

    FRED案例:矩形微透镜阵列

    介绍 小透镜阵列可应用在很多方面,其中包含光束均匀化。本文演示了一个用于在探测器上创建均匀的非相干照度的成像微透镜阵列的设计。输入光束具有高斯轮廓,半宽度等于微透镜阵列大小,并且显示了其功率轮廓被微
    发表于 03-05 09:41

    VirtualLab Fusion应用:超透镜的设计与分析

    摘要 透镜是一种透射光学装置,通过改变光的相位使光聚焦或散焦。与传统透镜不同,超透镜的优点是能够在非常薄的层中实现所需的相位变化,使用的结构尺寸在波长量级及以下,而不需要复杂和体积庞大的透镜
    发表于 03-04 10:05

    透镜阵列的高级模拟

    摘要 微透镜阵列在数字投影仪、光学扩散器、三维成像等各种光学应用中得到越来越多的关注。VirtualLab Fusion允许应用一种先进的场跟踪算法,通过所谓的多通道概念来分析这样的数组元素。在本例
    发表于 01-09 08:48

    通过微透镜阵列的传播

    随着现代技术的发展,微透镜阵列等专用光学元件越来越受到人们的重视。特别是在光学投影系统、材料加工单元、光学扩散器等领域,微透镜阵列得到了广泛的应用。在VirtualLab Fusion中,可以
    发表于 01-08 08:49

    VirtualLab Fusion应用:球面透镜元件

    摘要 球面透镜是任何光学设计师必不可少的工具。本用例演示了一个组件,便于在VirtualLab Fusion中包含和规范它们。 元件位置 球面透镜(Spherical Lens)元件可以在元件
    发表于 01-06 08:48

    眼内衍射透镜的设计与分析

    摘要 多焦点眼内人工晶体植入术目前被广泛应用于治疗白内障。多焦点眼内透镜的优点之一是能为患者提供良好的远近视力。在本示例中,我们演示了如何将初始设计导入 VirtualLabFusion,并在考虑
    发表于 12-30 10:13

    在光学设置中包含透镜系统

    **摘要** 在本文档中,我们介绍了一种可能的工作流程,用于将给定透镜的参数(例如,来自制造商的数据表)传输到VirtualLab Fusion中。作为示例,我们使用了一个非球面透镜,其中表面参数
    发表于 12-27 08:47

    不同类型透镜成像比较

    透镜是能使光线发生折射的光学元件,根据形状和成像特点的不同,透镜主要分为凸透镜和凹透镜两种。以下是关于这两种透镜成像的比较: 一、凸
    的头像 发表于 12-25 16:52 2912次阅读

    透镜成像原理及应用 透镜成像与光学镜头关系

    透镜成像原理 透镜成像的原理基于光的折射。当光线从一个介质(如空气)进入另一个介质(如透镜材料)时,光线会发生折射,即改变方向。透镜的形状和材料决定了光线折射的程度和方向。 凸
    的头像 发表于 12-25 16:47 4599次阅读