0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自蔓延法合成碳化硅的关键控制点

中科院半导体所 来源:晶格半导体 2024-12-20 10:20 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文主要介绍‍‍‍‍‍‍自蔓延法合成碳化硅的关键控制点。‍‍‍‍

合成温度:调控晶型、纯度与粒径的关键因素

在改进的自蔓延合成法中,温度起着决定性的作用。不同的反应温度,能够精准地控制 SiC 粉体的晶型。当温度处于 1800℃和 1950℃时,所合成的 SiC 粉体主要为β - SiC。然而,当温度升高至 2050℃和 2150℃,由于部分 C 粉剩余,SiC 粉体呈现黑色,并且经 XRD 测试发现有α - SiC 生成。这一奇妙的变化,为我们根据不同需求定制 SiC 晶型提供了可能。

392da9d6-bd29-11ef-8732-92fbcf53809c.png

不仅如此,反应温度还与 SiC 粉体的纯度和粒径紧密相连。在 1920℃至 1966℃这一区间内,随着温度的逐步升高,SiC 粉体的粒度会相应增加。但当温度继续攀升后,粒度又会逐渐减小,最终趋于 20μm。这就像是一场微观世界里的“粒度舞蹈”,而温度则是那位掌控节奏的“指挥家”。因此,在工业生产中,精确控制合成温度,是获取理想纯度和粒径 SiC 粉体的关键所在。

Si 源:粒度决定纯度与产率

Si 源在高纯碳化硅粉体的合成中同样扮演着不可或缺的角色。不同粒度的 Si 粉,会对合成产物的组成及产率产生极为显著的影响。当使用粒度大于 500μm 的球状 Si 粉时,合成产物中会出现坚硬固体,难以进行研碎处理,这无疑给后续的生产工序带来了巨大的困扰。而粒度大于 20μm 的 Si 粉体则截然不同,它能够生成疏松的粉体,大大提高了合成产率。

选用合适粒度的 Si 粉,还有利于提升 SiC 粉体的纯度。粒度较小的 Si 粉体在合成过程中能够更加完全地参与反应,从而有效减少未反应的 Si 残留。这就好比是一场化学反应中的“拼图游戏”,合适粒度的 Si 粉能够更加精准地与其他原料契合,从而拼凑出纯度更高的 SiC 粉体。

C 源:纯度、粒径与 N 含量的微妙平衡

C 源的纯度和粒径,对 SiC 的纯度和粒径有着直接的影响。当以粒径较大的活性炭作为 C 源时,合成产物中往往会有未反应的 Si 粉剩余,这就如同一场未完成的化学反应“盛宴”,留下了遗憾的“残羹剩饭”。而粒径较小的片状石墨则能够确保 Si 和 C 充分反应,成功生成纯度较高的β - SiC。

此外,为了降低 SiC 粉体中 N 含量,我们还需要关注 C 源中吸附的空气。初步研究表明,选择粒径较大的 C 粉可能有助于减少 N 杂质,不过其对 SiC 粉合成的具体影响,仍有待进一步深入研究。这就像是在探索一个神秘的微观化学世界,每一个细微的发现都可能为我们打开一扇全新的大门。

反应时间:粒径与晶型的演变之旅

反应时间的长短,也在高纯碳化硅粉体的合成中留下了深刻的印记。当我们将合成时间延长至 15 小时,原料的颜色会逐渐变深,这一现象背后隐藏的秘密是粒径在不断变大。反应时间对 SiC 原料的影响,主要就体现在粒径这一关键指标上。

同时,不同的反应时间还会对合成产物的晶型产生影响。当反应时间为 4 小时时,产物主要为 6H - SiC;而当反应时间达到 12 小时后,15R - SiC 则会逐渐增多。这就像是在时间的长河中,SiC 粉体的晶型在悄然发生着“变身”,而反应时间则是那把开启“变身密码”的神秘钥匙。

压强:优化合成条件与结晶性能

压强也是影响高纯碳化硅粉体合成的一个重要因素。在 100 至 300Torr 的压强范围内,合成的 SiC 原料呈现出较为疏松且一致性良好的状态。然而,一旦压强超过 300Torr,反应就会变得不完全,合成料偏硬,这对于后续的处理工作极为不利。

中压强(700Torr 或 6Torr)则对 SiC 的结晶性能有着积极的促进作用。在高压强下,Si 粉的升华会受到抑制,从而使得反应更加充分;而在低压强下,粉体的热运动得到增强,进而促进了结晶性能的提升。这就像是在不同的压强“舞台”上,SiC 粉体的合成反应在演绎着各具特色的“精彩剧目”。

改进的自蔓延合成法在工业生产高纯 SiC 粉体中展现出了巨大的潜力和显著的优势。但我们必须清楚地认识到,要想确保最终产品的质量和性能,就必须对合成温度、Si 源、C 源、反应时间以及压强等诸多条件进行严格而精准的控制。只有这样,我们才能在高纯碳化硅粉体的工业生产之路上不断前行,为高科技产业的发展提供更加优质的原材料保障,推动材料科学领域迈向更加辉煌的未来。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SiC
    SiC
    +关注

    关注

    32

    文章

    3514

    浏览量

    68148
  • 碳化硅
    +关注

    关注

    25

    文章

    3316

    浏览量

    51717

原文标题:自蔓延法合成碳化硅的关键控制点

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    探索碳化硅如何改变能源系统

    作者:Michael Williams, Shawn Luke 碳化硅 (SiC) 已成为各行各业提高效率和推动脱碳的基石。碳化硅是高级电力系统的推动剂,可满足全球对可再生能源、电动汽车 (EV
    的头像 发表于 10-02 17:25 1418次阅读

    Wolfspeed碳化硅技术实现大规模商用

    的专利申请量就增长了约 200%。Wolfspeed 强大的知识产权组合支撑着材料和器件方面的关键突破,这些突破使得碳化硅 (SiC) 技术得以实现大规模商用。
    的头像 发表于 09-22 09:31 514次阅读

    碳化硅 TTV 厚度在 CMP 工艺中的反馈控制机制研究

    一、引言 化学机械抛光(CMP)工艺是实现碳化硅(SiC)衬底全局平坦化的关键技术,对提升衬底质量、保障后续器件性能至关重要。总厚度偏差(TTV)作为衡量碳化硅衬底质量的核心指标之一,其精确
    的头像 发表于 09-11 11:56 534次阅读
    <b class='flag-5'>碳化硅</b> TTV 厚度在 CMP 工艺中的反馈<b class='flag-5'>控制</b>机制研究

    碳化硅器件的应用优势

    碳化硅是第三代半导体典型材料,相比之前的硅材料,碳化硅有着高击穿场强和高热导率的优势,在高压、高频、大功率的场景下更适用。碳化硅的晶体结构稳定,哪怕是在超过300℃的高温环境下,打破了传统材料下器件的参数瓶颈,直接促进了新能源等
    的头像 发表于 08-27 16:17 1113次阅读
    <b class='flag-5'>碳化硅</b>器件的应用优势

    激光干涉碳化硅衬底 TTV 厚度测量中的精度提升策略

    摘要 本文针对激光干涉碳化硅衬底 TTV 厚度测量中存在的精度问题,深入分析影响测量精度的因素,从设备优化、环境控制、数据处理等多个维度提出精度提升策略,旨在为提高碳化硅衬底 TT
    的头像 发表于 08-12 13:20 677次阅读
    激光干涉<b class='flag-5'>法</b>在<b class='flag-5'>碳化硅</b>衬底 TTV 厚度测量中的精度提升策略

    碳化硅晶圆特性及切割要点

    01衬底碳化硅衬底是第三代半导体材料中氮化镓、碳化硅应用的基石。碳化硅衬底以碳化硅粉末为主要原材料,经过晶体生长、晶锭加工、切割、研磨、抛光、清洗等制造过程后形成的单片材料。按照电学性
    的头像 发表于 07-15 15:00 860次阅读
    <b class='flag-5'>碳化硅</b>晶圆特性及切割要点

    低劣品质碳化硅MOSFET的滥用将SiC逆变焊机直接推向“早衰”

    蔓延,国产碳化硅逆变焊机或重蹈光伏逆变器早期“价格战毁”覆辙,最终沦为技术史上的失败案例。唯有通过强制可靠性标准(如严格的TDDB和HTGB)、建立全生命周期质量追溯体系,并引导资本投向已验证技术,才能挽救这一战略产业。 1.
    的头像 发表于 04-14 07:02 587次阅读
    低劣品质<b class='flag-5'>碳化硅</b>MOSFET的滥用将SiC逆变焊机直接推向“早衰”

    CREE(Wolfspeed)的垄断与衰落及国产碳化硅衬底崛起的发展启示

    中国碳化硅衬底材料从受制于人到实现自主突破的历程,以及由此对国产碳化硅功率半导体企业的启示,可以归纳为以下几个关键:  一、从垄断到突破:中国碳化
    的头像 发表于 03-05 07:27 1207次阅读
    CREE(Wolfspeed)的垄断与衰落及国产<b class='flag-5'>碳化硅</b>衬底崛起的发展启示

    碳化硅薄膜沉积技术介绍

    多晶碳化硅和非晶碳化硅在薄膜沉积方面各具特色。多晶碳化硅以其广泛的衬底适应性、制造优势和多样的沉积技术而著称;而非晶碳化硅则以其极低的沉积温度、良好的化学与机械性能以及广泛的应用前景而
    的头像 发表于 02-05 13:49 1798次阅读
    <b class='flag-5'>碳化硅</b>薄膜沉积技术介绍

    碳化硅在半导体中的作用

    碳化硅(SiC)在半导体中扮演着至关重要的角色,其独特的物理和化学特性使其成为制作高性能半导体器件的理想材料。以下是碳化硅在半导体中的主要作用及优势: 一、碳化硅的物理特性 碳化硅具有
    的头像 发表于 01-23 17:09 2431次阅读

    产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用

    *附件:国产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用.pdf
    发表于 01-20 14:19

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性能和使用寿命
    发表于 01-04 12:37

    用于切割碳化硅衬底TTV控制的硅棒安装机构

    一、碳化硅衬底TTV控制的重要性 碳化硅衬底的TTV是指衬底表面各厚度最高点与最低点之间的差值。TTV的大小直接影响后续研磨、抛光工序的效率和成本,以及最终产品的质量和性能。因此,在
    的头像 发表于 12-26 09:51 465次阅读
    用于切割<b class='flag-5'>碳化硅</b>衬底TTV<b class='flag-5'>控制</b>的硅棒安装机构

    碳化硅衬底修边处理后,碳化硅衬底TTV变化管控

    一、碳化硅衬底修边处理的作用与挑战 修边处理是碳化硅衬底加工中的一个关键步骤,主要用于去除衬底边缘的毛刺、裂纹和不规则部分,以提高衬底的尺寸精度和边缘质量。然而,修边过程中由于机械应力、热应力以及
    的头像 发表于 12-23 16:56 487次阅读
    <b class='flag-5'>碳化硅</b>衬底修边处理后,<b class='flag-5'>碳化硅</b>衬底TTV变化管控

    高纯碳化硅粉体合成方法

      本文介绍了半导体材料碳化硅的性能、碳化硅单晶生长以及高纯碳化硅粉体的合成方式。 在科技飞速发展的今天,半导体材料领域正经历着一场深刻的变革。第三代宽禁带半导体材料
    的头像 发表于 12-17 13:55 1513次阅读