0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氮化硅薄膜制备方法及用途

芯长征科技 来源:芯长征科技 2024-11-24 09:33 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、氮化硅薄膜制备方法及用途

氮化硅(Si3N4)薄膜是一种应用广泛的介质材料。作为非晶态绝缘体,氮化硅薄膜的介电特性优于二氧化硅,具有对可移动离子较强的阻挡能力、结构致密、针孔密度小、化学稳定性好、介电常数高等优点,在集成电路制造领域被广泛用作表面钝化层、绝缘层、扩散阻挡层、刻蚀掩蔽膜等。

LPCVD和PECVD制备氮化硅薄膜特性对比(下表)

ed2ada8e-a254-11ef-93f3-92fbcf53809c.png

低压化学气相沉积(LPCVD)氮化硅工艺需要高温,通常在700~800°C,而等离子体增强化学气相沉积(PECVD)氮化硅可以在低于 400°C 的温度下沉积。相较于PECVD氮化硅薄膜,LPCVD氮化硅具备更加致密的薄膜特性,更耐腐蚀,薄膜硬度更好,掩膜性更好,更加广泛的应用于碱性溶液刻蚀硅材料的掩膜层。不过这两个过程通常存在工艺温度和薄膜质量之间的利弊权衡,LPCVD 工艺沉积高质量的氮化硅薄膜,而PECVD工艺沉积包含不同浓度硅氢键的氮化硅薄膜。

氮化硅薄膜是无定形的硬质材料,在半导体器件制造中有两个主要用途:掩蔽膜和钝化层。掩蔽膜通常使用 LPCVD 沉积,因为这会产生最不透水的薄膜。氮化硅掩蔽特别适用于热氧化过程,因为氧气很难经由氮化硅扩散。

氮化硅作为钝化层也具有许多理想的品质。PECVD 方法允许其在与底层器件结构兼容的工作温度下沉积。该薄膜几乎不受水分和钠离子等关键环境污染物的影响。最后,通过调整 PECVD 工艺条件,还可以调整薄膜中的固有应力,以消除薄膜分层或开裂的任何风险。

二、低应力 PECVD氮化硅薄膜制备

对于很多常用材料,如氮化硅、多晶硅等,本征应力是不可避免的。不过在半导体工艺中往往需要较低的薄膜应力,以保证较小的器件形变。通常的方法是采用多层薄膜结构,并通过选择材料、控制厚度和应力方向(一层由于压应力而产生了形变的薄膜,理论上增加一层张应力的材料,可以使总的变形降低为零)来进行补偿以消除应力带来的结构变形。

在PECVD制备氮化硅薄膜工艺中,薄膜应力主要来源于两个方面。一是由于薄膜和衬底之间不同的热膨胀系数所导致的热应力,这种应力是由于在高温条件下淀积的薄膜当降低到室温时相对于衬底会产生一定的收缩或膨胀,表现出张应力或压应力。

另外,淀积薄膜的微结构也是产生应力的重要原因,这种应力的产生主要是由于薄膜和衬底接触层的错位,或者是因为薄膜内部的一些晶格失配等缺陷和薄膜固有的分子排列结构造成的。

在PECVD系统中,由于淀积温度较低(通常不超过400℃),并且引用射频放电产生等离子体来维持反应,因此射频条件(频率和功率)成为影响氮化硅薄膜应力的关键因素之一。

PECVD淀积的氮化硅薄膜化学比分波动较大,其硅-氮比随反应气体比例的变化而变化,同时淀积的氮化硅薄膜中通常还含有一定量的氢元素,氢的存在会使薄膜的结构性能产生退化,但也会降低薄膜的应力。

在低频(380kHz)条件下,反应气体的离化率较高,等离子体密度较大,在淀积反应过程中比较容易减少氢元素的掺入,使薄膜变得致密,因此会产生较大的压应力,较高等离子体密度也会产生较快的淀积速率。

在高频(13.56MHz)条件下,反应气体的离化程度远低于低频时,因此等离子体密度较低,在淀积反应中引入较多的氢元素,这种含氢较高且比较疏松的结构所带来的就是薄膜的张应力。

混频氮化硅薄膜的性质介于二者之间,可以视为低频氮化硅和高频氮化硅二者的叠加。因此可以使用混频工艺减小氮化硅薄膜的应力,并对混频工艺的参数进行控制来实现对薄膜应力大小甚至方向的控制。

不过对于混频工艺中低频和高频反应时间周期需要适当选取。当切换时间周期过短,反应腔中将频繁的进行高低频的交换,由于高频和低频条件下的等离子体性质有较明显的差异,因此这种频繁的切换会使等离子体变得不稳定,从而影响薄膜的均匀性。当切换时间周期过长,由于高频和低频氮化硅本身又在致密度、折射率等参数上有所不同,过长时间的单一频率淀积会影响氮化硅薄膜厚度方向上的均匀性。因此在进行工艺调整时对于以上两方面因素要折中考虑。

射频功率是 PECVD 工艺中最重要的参数之一。当射频功率较小时,反应气体尚不能充分电离,激活效率低,反应物浓度小,薄膜针孔多且均匀性较差;当射频功率增大时,气体激活效率提高,反应物浓度增大,并且等离子体气体对衬底有一定的轰击作用使生长的氮化硅薄膜结构致密,提高了膜的抗腐蚀性能。但射频功率不能过大,否则沉积速率过快,会出现类似“溅射”现象影响薄膜性质。低频条件下氮化硅薄膜应力为压应力,高频条件下为张应力,其大小均随功率的增大而减小。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 薄膜
    +关注

    关注

    0

    文章

    336

    浏览量

    42904
  • 氮化硅
    +关注

    关注

    0

    文章

    91

    浏览量

    644

原文标题:【推荐】氮化硅薄膜特性简介

文章出处:【微信号:芯长征科技,微信公众号:芯长征科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AMB覆铜陶瓷基板迎爆发期,氮化硅需求成增长引擎

    原理是在高温真空环境下,利用含有钛、锆、铪等活性元素的金属焊料,与氮化铝(AlN)或氮化硅(Si₃N₄)陶瓷表面发生化学反应,生成可被液态钎料润湿的稳定反应层,从而将纯铜箔牢固焊接在陶瓷基板上。   相比传统的DBC(直接键合铜)技术,AMB工艺通过化学键合而非物理共晶实
    的头像 发表于 12-01 06:12 4185次阅读

    高抗弯强度氮化硅陶瓷晶圆搬运臂解析

    热压烧结氮化硅陶瓷晶圆搬运臂是半导体洁净室自动化中的关键部件,其高抗弯强度范围在600至1000兆帕,确保了在高速、高精度晶圆处理过程中的可靠性和耐久性。本文首先分析氮化硅陶瓷的物理化学性能,然后
    的头像 发表于 11-23 10:25 2016次阅读
    高抗弯强度<b class='flag-5'>氮化硅</b>陶瓷晶圆搬运臂解析

    氮化硅陶瓷封装基片

    氮化硅陶瓷基片:高频电磁场封装的关键材料 氮化硅陶瓷基片在高频电子封装领域扮演着至关重要的角色。其独特的高电阻率与低介电损耗特性,有效解决了高频电磁场环境下电磁干扰引发的信号失真、串扰和成型缺陷
    的头像 发表于 08-05 07:24 686次阅读
    <b class='flag-5'>氮化硅</b>陶瓷封装基片

    热压烧结氮化硅陶瓷逆变器散热基板

    氮化硅陶瓷逆变器散热基板在还原性气体环境(H2, CO)中的应用分析 在新能源汽车、光伏发电等领域的功率模块应用中,逆变器散热基板不仅面临高热流密度的挑战,有时还需耐受如氢气(H2)、一氧化碳(CO
    的头像 发表于 08-03 11:37 1196次阅读
    热压烧结<b class='flag-5'>氮化硅</b>陶瓷逆变器散热基板

    氮化硅陶瓷基板:新能源汽车电力电子的散热革新

    在新能源汽车快速发展的今天,电力电子系统的性能提升已成为行业竞争的关键。作为核心散热材料的 陶瓷基板 ,其技术演进直接影响着整车的能效和可靠性。在众多陶瓷材料中,氮化硅(Si?N?)凭借其独特的性能
    的头像 发表于 08-02 18:31 4207次阅读

    氮化硅陶瓷逆变器散热基板:性能、对比与制造

    氮化硅(Si₃N₄)陶瓷以其卓越的综合性能,成为现代大功率电子器件(如IGBT/SiC模块)散热基板的理想候选材料。
    的头像 发表于 07-25 17:59 1237次阅读
    <b class='flag-5'>氮化硅</b>陶瓷逆变器散热基板:性能、对比与制造

    氮化硅大功率电子器件封装陶瓷基板

    氮化硅陶瓷导热基片凭借其优异的综合性能,在电子行业,尤其是在高功率密度、高可靠性要求领域,正扮演着越来越重要的角色。
    的头像 发表于 07-25 17:58 650次阅读

    氮化硅陶瓷射频功率器件载体:性能、对比与制造

    氮化硅陶瓷凭借其独特的物理化学性能组合,已成为现代射频功率器件载体的关键材料。其优异的导热性、绝缘性、机械强度及热稳定性,为高功率、高频率电子设备提供了可靠的解决方案。 氮化硅陶瓷载体 一、氮化硅
    的头像 发表于 07-12 10:17 1.4w次阅读
    <b class='flag-5'>氮化硅</b>陶瓷射频功率器件载体:性能、对比与制造

    浅谈半导体薄膜制备方法

    本文简单介绍一下半导体镀膜的相关知识,基础的薄膜制备方法包含热蒸发和溅射法两类。
    的头像 发表于 06-26 14:03 1218次阅读
    浅谈半导体<b class='flag-5'>薄膜</b><b class='flag-5'>制备</b><b class='flag-5'>方法</b>

    化硅薄膜氮化硅薄膜工艺详解

    化硅薄膜氮化硅薄膜是两种在CMOS工艺中广泛使用的介电层薄膜
    的头像 发表于 06-24 09:15 1519次阅读
    氧<b class='flag-5'>化硅</b><b class='flag-5'>薄膜</b>和<b class='flag-5'>氮化硅</b><b class='flag-5'>薄膜</b>工艺详解

    通过LPCVD制备氮化硅低应力膜

    本文介绍了通过LPCVD制备氮化硅低应力膜 氮化硅膜在MEMS中应用十分广泛,可作为支撑层、绝缘层、钝化层和硬掩膜使用。SiN极耐化学腐蚀,疏水性使它可以作为MEMS压力传感器、MEMS流量
    的头像 发表于 05-09 10:07 953次阅读
    通过LPCVD<b class='flag-5'>制备</b><b class='flag-5'>氮化硅</b>低应力膜

    spm清洗会把氮化硅去除吗

    很多行业的人都在好奇一个问题,就是spm清洗会把氮化硅去除吗?为此,我们根据实践与理论,给大家找到一个结果,感兴趣的话可以来看看吧。 SPM清洗通常不会去除氮化硅(Si₃N₄),但需注意特定条件
    的头像 发表于 04-27 11:31 743次阅读

    氮化硅在芯片制造中的核心作用

    在芯片制造这一复杂且精妙的领域中,氮化硅(SiNx)占据着极为重要的地位,绝大多数芯片的生产都离不开它的参与。从其构成来看,氮化硅属于无机化合物,由硅元素与氮元素共同组成。这种看似普通的元素组合,却蕴含着诸多独特的性质,在芯片制造流程里发挥着不可替代的作用 。
    的头像 发表于 04-22 15:23 2158次阅读
    <b class='flag-5'>氮化硅</b>在芯片制造中的核心作用

    单晶圆系统:多晶硅与氮化硅的沉积

    本文介绍了单晶圆系统:多晶硅与氮化硅的沉积。 在半导体制造领域,单晶圆系统展现出独特的工艺优势,它具备进行多晶硅沉积的能力。这种沉积方式所带来的显著益处之一,便是能够实现临场的多晶硅和钨硅化物沉积
    的头像 发表于 02-11 09:19 1022次阅读
    单晶圆系统:多晶硅与<b class='flag-5'>氮化硅</b>的沉积

    LPCVD氮化硅薄膜生长的机理

    可以看出, SiH4提供的是Si源,N2或NH3提供的是N源。但是由于LPCVD反应温度较高,氢原子往往从氮化硅薄膜中去除,因此反应物中氢的含量较低。氮化硅中主要由硅和氮元素组成。而PECVD反应
    的头像 发表于 02-07 09:44 1107次阅读
    LPCVD<b class='flag-5'>氮化硅</b><b class='flag-5'>薄膜</b>生长的机理