0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

寻找超导量子比特信息丢失的原因

中科院半导体所 来源:返朴 2024-11-21 10:11 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一项新研究为超导量子比特中的信息是如何丢失的提供了新线索。

今天谈一个全世界都非常关注的东西——超导量子比特。

我们知道,量子计算可能为我们带来不可思议的指数级计算加速,为我们的未来注入无限的想象力。而它的最基本单元叫做量子比特。量子比特是最简单的量子系统,它只有两个能级——你可以简单理解为两个能量状态(注:能级可以理解为量子系统的某个能量状态,与经典系统不同——其能量可以连续变化,量子系统表现出来的能量状态是不连续的,是“一级一级”的,这也是我们为什么称之为“量子”的来由)。

但是,正如经典计算所基于的是最简单的逻辑单元——“开关”,上百亿个开关形成的电路却能完成今天如此不可思议的工作,那大量量子比特在一起形成的电路,加上量子独有的“Buff”——叠加性和纠缠性,能做的事情就更是超乎想象了。因此,构建一个“好”的量子比特,就成为了实现量子计算最为关键的任务之一。那么如何构建呢?肯定要先从素材入手。在微观世界中,要想找到构建量子比特的素材,也就是一对量子能级,实际上并不困难,甚至可以说随处可见。举几个例子,任何一个原子,围绕着原子核的电子就有无穷多个能级,随便挑选其中两个,就可以算做一个量子比特;另外,电子是有自旋的,自旋的状态刚好有两种:向上或向下,简直就是天生的量子比特;在光子、原子核、分子等等微观体系中,都可以构造出量子比特,这样的例子举之不尽。不过,今天要讲的主角超导量子比特却是个例外。它不是在微观粒子中,而是在宏观器件中构建量子比特。它的量子态不是某一个粒子的状态,而是大量粒子形成的某种集体状态。那是什么天生异质,让它这么受欢迎呢?

首先,超导量子比特是固态器件,也就是说,它可以像晶体管那样,印刷到芯片上。这带来两个好处,第一个自然就是便于集成和扩展,这可是半导体晶体管能够统治经典计算世界的关键所在。另外一个则是它的位置是固定的。这个好处只有做过微观粒子量子比特的人才会有的体会。以前面提到的电子自旋为例,它确实是天生的量子比特,但是,电子太轻太活跃了,要怎么把电子抓住就已经是难比登天了,更遑论还要去精确地操控他们。直到今天我们才找到较好的方法去抓住原子并让它们规矩排列,这些原子还是会一不留神就跑掉。对超导量子比特这样的固态器件来说,这根本就不是个问题。它就是一只薛定谔的肥猫,趴在那里一动不动,为操控和测量它们提供了极大的便利。

其次,超导量子比特是基于宏观量子态的。与微观相对应,宏观是指有大量的粒子集体参与的行为,超导量子比特中,有百万到上亿个库珀对[注:库珀对是由一对自旋相反、动量(几乎)相反的电子在晶格振动(声子)帮助下相互吸引形成的电子对,配对后因自旋为零而具有玻色子性质,所有库珀对会凝聚到基态而形成一个新的物相——超导态。]被约束在一个由约瑟夫森结和电容/电感形成的电路中。这有什么好处呢?首先,单个粒子与外界电磁场的相互作用极为微弱,大量粒子在一起,相互作用的强度就被大大地放大了,因此更容易操控和测量;其次,量子比特之间也更容易耦合,意味着我们可以很容易地将它们纠缠在一起。总之,超导量子比特这只薛定谔的猫很大只,所以我们撸起来就要容易得多。

说完好处,该说说问题了。正因为这只薛定谔的肥猫个头太大,它也就更容易受到其他无关因素的影响。而在固体中这种“无关”因素实在太多了,同样是宏观量级的。这就导致了超导量子比特的“寿命”特别短。弹指一挥间,对于超导量子比特而言已经如同海枯石烂了。第一个超导量子比特的寿命只有几纳秒,经过二十多年的努力,现在也仅提升至百微秒到毫秒量级,与基于微观粒子的量子比特,比如离子阱的分钟量级相比,要短得多。好在超导量子比特的操控时间也很短,两相抵消,性能并不比离子阱等量子比特弱。

不管怎样,提升量子比特的寿命,一直都是极为重要的研究主题。超导量子比特中最关键的部件是约瑟夫森结,了解其中的耗散机制,也就是能量或者说信息是怎么丢掉,消失在“茫茫热海”中非常重要。我们已经弄清楚了包括电荷涨落、磁通涨落、准粒子隧穿等退相干机制,并在这些认知的基础上设计出了像Transmon、Fluxonium这样寿命很长的量子比特。

2024年8月,来自芬兰阿尔托大学的团队采用极为精密的热电子辐射计来研究约瑟夫森结中的振荡电流是如何转化为热量的。在不同的偏置区域,团队测到了不同的耗散行为,对应不同的能量耗散机制。研究团队还建立了一个电路模型,解释了实验结果,捕捉了约瑟夫森结及其周围环境的动态行为。这种辐射测量检测方法为研究约瑟夫森动力学提供了一种比传统电测量方法更敏感的工具。实验的宽带检测能力为探索量子现象和提高超导量子比特的相干性提供了新的可能性。对量子计算和量子计量学都是有重要意义的。

随着我们对超导量子比特材料和微观机理理解的越发深入,相信未来我们能够做出寿命更长的量子比特。结合量子纠错方面的进展,我们距离通用量子计算的时代已经越来越近。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子
    +关注

    关注

    0

    文章

    497

    浏览量

    26365
  • 量子计算
    +关注

    关注

    4

    文章

    1163

    浏览量

    36343
  • 量子比特
    +关注

    关注

    0

    文章

    41

    浏览量

    9120

原文标题:寻找超导量子比特信息丢失的原因

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    快450000000倍!超导量子计算机“天衍-287”建成

    电子发烧友网综合报道 2025年11月14日,中国电信量子研究院正式宣布,搭载“祖冲之三号”同款芯片的超导量子计算机“天衍-287”完成搭建。这一突破标志着我国首个具备“量子计算优越性
    的头像 发表于 11-18 08:40 8194次阅读
    快450000000倍!<b class='flag-5'>超导</b><b class='flag-5'>量子</b>计算机“天衍-287”建成

    量子通信与激光雷达利器:超导纳米线单光子探测器技术与应用指南

    概述 超导纳米线单光子探测器作为量子技术领域的核心器件,以其近乎极限的探测效率、极低的暗计数和皮秒级的时间抖动,正不断重新定义量子通信、激光雷达与量子计算等前沿科技的边界。本文将深入解
    的头像 发表于 10-16 17:00 649次阅读
    <b class='flag-5'>量子</b>通信与激光雷达利器:<b class='flag-5'>超导</b>纳米线单光子探测器技术与应用指南

    《精准量子比特控制和读取》白皮书

    在上篇客户案例中,我们分享了德国马普高分子研究所团队如何利用NV色心构建高灵敏度的磁力计,案例展示了量子比特相干稳定性在实验中的关键作用。要进一步加深理解量子比特的基本与控制方法,我们
    的头像 发表于 08-21 17:23 443次阅读
    《精准<b class='flag-5'>量子</b><b class='flag-5'>比特</b>控制和读取》白皮书

    全球首个!低温下可精准控制“百万量级量子比特”芯片问世

    发表于《自然》期刊,为实用化量子计算机的构建开辟了新路径。   研究团队研制的新型芯片基于自旋量子比特技术,通过操控单个电子的磁方向编码信息。这一技术路线具有两大核心优势:一是自旋
    的头像 发表于 07-07 05:58 3100次阅读

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    量子比特可同时处于0和1的叠加态,使量子计算机在处理并行问题时具备指数级加速潜力。量子纠缠,即多个量子
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    支持500 +量子比特!国产第4代量子计算测控系统发布

    科技(合肥)股份有限公司研发,安徽省量子计算工程研究中心参与支持,是继 “本源天机 3.0” 成功应用于第三代超导量子计算机 “本源悟空” 后的重大升级,为百比特
    的头像 发表于 05-12 09:28 5217次阅读

    支持500 +量子比特!国产第4代量子计算测控系统发布

    科技(合肥)股份有限公司研发,安徽省量子计算工程研究中心参与支持,是继 “本源天机 3.0” 成功应用于第三代超导量子计算机 “本源悟空” 后的重大升级,为百比特
    的头像 发表于 05-11 00:50 6519次阅读

    超导电机——东芝2MW项目

    在高效、轻量、电动化趋势加速的当下,“超导电机”作为一种革命性电驱技术,正在从实验室走向工程验证。而日本东芝与空中客车联合开发的2MW高温超导电机项目,成为该领域全球关注的核心案例。 超导电机是将
    发表于 04-08 16:53

    未来产业 | 量子科技核心材料体系

    三个维度展开分析:一、量子科技核心材料体系1.量子计算材料超导材料:铌钛合金(NbTi)、拓扑超导体(如SrBiSe单晶体)构成量子
    的头像 发表于 04-07 06:50 2316次阅读
    未来产业 | <b class='flag-5'>量子</b>科技核心材料体系

    绝对值编码器位置丢失是什么原因?有什么解决办法?

    绝对值编码器位置丢失可能由多种原因引起,以下是一些常见原因及相应的解决办法: 一、原因分析 1. 电源干扰:    ● 错误的电压、电流或突然断电可能会影响编码器的读数,导致位置
    的头像 发表于 03-16 17:17 3227次阅读

    量子处理器的作用_量子处理器的优缺点

    量子比特可以同时处于0和1的状态,这种量子叠加特性使得量子处理器能够同时处理大量信息。此外,量子
    的头像 发表于 01-27 13:44 1574次阅读

    玻色量子上线550量子比特云服务

    2025年1月,由北京玻色量子科技有限公司(简称“玻色量子”)自研的相干光量子计算云平台正式上线,可支持550计算量子比特云服务(以下简称“
    的头像 发表于 01-13 09:11 1913次阅读

    泰克示波器在量子计算测试中的潜在应用

    ,凭借其高速采样率、高带宽以及精密的信号分析功能,为量子计算测试提供了强有力的工具,展现出巨大的应用潜力。 目前,量子计算的实验主要集中在超导量子
    的头像 发表于 01-03 15:05 767次阅读
    泰克示波器在<b class='flag-5'>量子</b>计算测试中的潜在应用

    NVIDIA CUDA-Q助力业内首个量子计算逻辑量子比特演示

    量子计算具有变革药物发现、物流等各行各业的巨大潜力。然而,噪声一直是量子器件在投入实际应用的过程中所面临的巨大障碍。由于存在这些因环境相互作用和不完美硬件导致的噪声干扰,量子计算的性能目前在
    的头像 发表于 12-24 09:33 1081次阅读

    超导材料的制造工艺 超导材料的分类与比较

    超导材料的制造工艺 超导材料的制造工艺通常包括以下几个步骤: 原料制备 :根据超导材料的类型,选择合适的原料,如金属、合金、陶瓷等。 合成 :通过物理或化学方法合成超导材料。物理方法包
    的头像 发表于 12-19 15:09 3074次阅读