0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

清华光芯片取得新突破,迈向AI光训练

Felix分析 来源:电子发烧友 作者:吴子鹏 2024-08-13 01:23 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电子发烧友网报道(文/吴子鹏)近日,清华大学发布官方消息称,清华大学电子工程系方璐教授课题组、自动化系戴琼海院士课题组另辟蹊径,首创了全前向智能光计算训练架构,研制了“太极-II”光训练芯片,实现了光计算系统大规模神经网络的高效精准训练。

目前,这一研究成果已经于北京时间8月7日正式刊登在《自然》期刊上,主题为“光神经网络全前向训练”。

“太极”光训练芯片快速进化

去年10月,清华大学就发布消息称,方璐教授课题组、戴琼海院士课题组联合攻关,提出了一种“挣脱”摩尔定律的全新计算架构:光电模拟芯片,算力达到目前高性能商用芯片的三千余倍。

2023年10月26日,清华大学光电模拟芯片的研究成果发布在《自然》期刊上,这篇论文帮助大家科普了光电模拟芯片的理念和实现方式。根据论文,这是一种光电深度融合的计算框架,结合了基于电磁波空间传播的光计算,与基于基尔霍夫定律的纯模拟电子计算。在芯片制程上,该芯片不再受限于摩尔定律;在数据传输上,该芯片用光传输取代了电信号传输,打破了传统芯片架构中数据转换速度、精度与功耗相互制约的物理瓶颈。

今年4月份,这项研究正式推出了“太极”芯片,可实现160TOPS/W的系统级能效。论文第一作者、清华大学电子系博士生徐智昊表示,“太极”芯片采用的是干涉—衍射分布式广度光计算架构,自顶向下的编码拆分-解码重构机制,将复杂智能任务化繁为简,拆分为多通道高并行的子任务,构建的分布式‘大感受野’浅层光网络对子任务分而治之,突破物理模拟器件多层深度级联的固有计算误差。

从“太极”芯片到“太极-II”芯片,只有不到半年的时间,但是其中的进步是非常明显的。根据论文信息,“太极”芯片依然依赖传统的光通信架构,需要GPU进行离线建模,要求高度匹配的前向-反向传播模型,也就需要物理系统精准对齐,“太极-II”芯片不再依赖电计算进行离线的建模与训练,大规模神经网络的精准高效光训练终于得以实现。

据介绍,“太极-Ⅱ”芯片的面世,填补了智能光计算在大规模神经网络训练这一核心领域的空白。除了加速AI模型训练外,其还在高性能智能成像、高效解析拓扑光子系统等方面表现出卓越性能,为人工智能大模型、通用人工智能、复杂智能系统的高效精准训练开辟了新路径。

更进一步说,“太极-Ⅱ”芯片的发布对“光子传播对称性”研究有重要意义,将神经网络训练中的前向与反向传播都等效为光的前向传播。据论文第一作者、电子系博士生薛智威介绍,在太极-II架构下,梯度下降中的反向传播化为了光学系统的前向传播,光学神经网络的训练利用数据-误差两次前向传播即可实现。两次前向传播具备天然的对齐特性,保障了物理梯度的精确计算。如此实现的训练精度高,便能够支撑大规模的网络训练。

芯片制造上,“太极”芯片光学部分的加工最小线宽仅采用百纳米级,电路部分仅采用180nm CMOS工艺,已取得比7nm制程的高性能芯片多个数量级的性能提升。芯片成本仅为目前先进计算芯片的几十分之一,这是一种真正的芯片换道超车。

光芯片是计算芯片的未来?

曾几何时,摩尔定律被誉为“硅谷的节拍器”,但近年来业界关于“摩尔定律是否失效”的讨论越来越多。尤其是在AI时代,算力需求的爆发式增长让摩尔定律正在失效的影响被进一步放大。在过去的几十年中,摩尔定律一直被认为是计算机行业的基石之一,当其失效之后,会有更多的创新技术来引领高性能计算的发展,比如芯片制造层面的先进封装,再比如量子计算、光计算等。

在AI时代的未来里,光芯片被寄予厚望。微电子芯片采用电流信号来作为信息的载体,而光芯片则采用频率更高的光波来作为信息载体,具有更低的传输损耗 、更宽的传输带宽、更小的时间延迟,以及更强的抗电磁干扰能力。

光芯片的核心是用波导来代替电芯片的铜导线,来做芯片和板卡上的信号传输,因此光芯片主要由发光器件(产生光)和光波导(引导光传播的装置)组成。当光在波导里面传输的时候,波导和波导之间出现光信号干涉,用这个物理过程来模拟线性计算这一类的计算过程,即通过光在传播和相互作用之中的信息变化来进行计算。

光芯片的发展并不是完全革新微电子芯片的技术路径,而是一种融合,因此光电转化也很关键。在电转光部分,激光器芯片主要用于发射信号,原理是以电激励源方式,以半导体材料为增益介质,将注入电流的电能激发,通过光学谐振放大选模,从而输出激光,实现电光转换。激光器芯片用到的增益介质包括GaAs(砷化镓)、InP(磷化铟)、Si(硅基)等。在光转电部分,探测器通过光电效应识别光信号,转化为电信号。

光芯片的生产流程基本可以分为芯片设计、基板制造、磊晶成长和晶粒制造四个流程,主要技术壁垒在后两点,其中磊晶成长也称外延生长,是技术壁垒最高的环节。因此,与微电子芯片侧重于光刻工艺追求先进制程不同,光芯片性能的提升不完全依靠尺寸的减小,更注重外延结构设计与生长。

在光芯片的研发上,国内除了清华大学,中科院的进展也是非常快的。比如,去年6月中国科学院半导体研究所集成光电子学国家重点实验室微波光电子课题组李明研究员-祝宁华院士团队研制出一款超高集成度光学卷积处理器,实现了“传输即计算,结构即功能”的计算架构,具有大带宽、低延时、低功耗等优点。

目前,国内的光芯片和光模块厂商包括芯思杰、瑞识科技、新亮智能、度亘激光、长瑞光电、立芯光电、源杰半导体、锐晶激光、索尔思光电、长光华芯、华工科技、光迅科技、新易盛、云岭光电、敏芯半导体、博创科技、中际旭创、纵慧芯光、曦智科技、剑桥科技、凌越光电、盛为芯等。这些企业主要关注数通市场,应用领域包括5G和数据中心光通信等。

不过,在数通市场的企业端,目前国内也还处于落后的位置,高端光器件的国产化率还比较低,比如25G及以上的光芯片,‌国产化率就比较低,其中25G光芯片的国产化率为20%,更高速率的国产化率仅为5%。在25G及以上的光模块里,光芯片的成本占比超过了60%,且速率越高占比越高,可见光芯片的重要性。

在光计算芯片方面,国内光计算芯片公司光本位科技已完成首颗算力密度和算力精度均达到商用标准的光计算芯片流片,峰值算力为1700TOPS,对标的是英伟达的A100,产业落地也在破晓之际。

结语

根据LightCounting的数据测算,全球光芯片市场规模将从2022年的27亿美元增长至2027年的56亿美元,CAGR为16%。其中绝大部分的光芯片仍然主要用于数据传输,在计算层面光芯片还在起步阶段,但概念探索和成果落地的速度非常快,国内清华大学和中科院更是捷报频传,有望实现国产高性能计算芯片的换道超车。‌

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光芯片
    +关注

    关注

    3

    文章

    103

    浏览量

    11337
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    、分布式群体智能 1)物联网AGI系统 优势: 组成部分: 2)分布式AI训练 7、发展重点:基于强化学习的后训练与推理 8、超越大模型:神经符号计算 三、AGI芯片的实现 1、技术需
    发表于 09-18 15:31

    AI芯片:科技探索与AGI愿景》—— 勾勒计算未来的战略罗盘

    如果说算力是AGI的“燃料”,那么AI芯片就是制造燃料的“精炼厂”。本书的卓越之处在于,它超越了单纯的技术拆解,成功绘制了一幅从专用智能迈向通用智能的“战略路线图”。作者以芯片为棱镜,
    发表于 09-17 09:32

    芯片技术突破和市场格局

    产业格局的核心技术。2025年全球硅芯片市场规模预计突破80亿美元,中国厂商在技术突破与商业化进程中展现出强劲竞争力。   硅
    的头像 发表于 08-31 06:49 2w次阅读

    AI 芯片浪潮下,职场晋升新契机?

    在科技飞速发展的当下,AI 芯片已然成为众多行业变革的核心驱动力。从互联网巨头的数据中心,到我们日常使用的智能手机、智能家居设备,AI 芯片的身影无处不在,深刻改变着产品形态与服务模式
    发表于 08-19 08:58

    睿海光电800G模块助力全球AI基建升级

    智造能力:深圳3120㎡智能制造基地采用全自动化封装与测试产线,月产能突破10万只,支持高速模块、液冷模块等产品的快速交付。 供应链垂直整合:与全球TOP级芯片厂商建立战略合作,关
    发表于 08-13 19:05

    睿海光电以高效交付与广泛兼容助力AI数据中心800G模块升级

    400G/800G模块已实现规模化量产,并基于AI工厂与AI云的核心需求进行深度优化: 速率突破:采用PAM4调制技术,单通道速率达100Gbps,整模块实现800Gbps传输能力,
    发表于 08-13 19:01

    加速AI未来,睿海光电800G OSFP模块重构数据中心互联标准

    在人工智能算力需求呈指数级增长的2025年,数据传输效率已成为制约AI发展的关键瓶颈。作为全球AI模块领域的标杆企业,深圳市睿海光电凭借技术领先的800G OSFP模块解决方案,正
    发表于 08-13 16:38

    ai_cube训练模型最后部署失败是什么原因?

    ai_cube训练模型最后部署失败是什么原因?文件保存路径里也没有中文 查看AICube/AI_Cube.log,看看报什么错?
    发表于 07-30 08:15

    海思SD3403边缘计算AI数据训练概述

    AI数据训练:基于用户特定应用场景,用户采集照片或视频,通过AI数据训练工程师**(用户公司****员工)** ,进行特征标定后,将标定好的训练
    发表于 04-28 11:11

    RAKsmart智能算力架构:异构计算+低时延网络驱动企业AI训练范式升级

    AI大模型参数量突破万亿、多模态应用爆发的今天,企业AI训练正面临算力效率与成本的双重挑战。RAKsmart推出的智能算力架构,以异构计算资源池化与超低时延网络为核心,重构
    的头像 发表于 04-17 09:29 609次阅读

    DeepSeek推动AI算力需求:800G模块的关键作用

    力集群的部署过程中,带宽瓶颈成为制约算力发挥的关键因素,而光模块的速率跃升成为突破这一瓶颈的核心驱动力。 模块速率跃升 随着算力集群的规模不断扩展,AI应用所需的带宽要求也在急剧上升。传统
    发表于 03-25 12:00

    训练好的ai模型导入cubemx不成功怎么处理?

    训练好的ai模型导入cubemx不成功咋办,试了好几个模型压缩了也不行,ram占用过大,有无解决方案?
    发表于 03-11 07:18

    国内AI行业近期取得显著进展

    近期,国内AI行业在视觉训练和应用层面取得了多项令人瞩目的进展。其中,VideoWorld的纯视觉训练方式在LDM(可能是指某种特定技术或模型,原文未明确)的加持下,展现出了卓越的
    的头像 发表于 02-13 11:25 997次阅读

    Figure AI宣布终止与OpenAI合作,称已在AI方面取得重大突破

    人工智能领域取得了“重大突破”。该公司声称,这一突破完全是在其内部独立开发的,无需依赖外部合作伙伴。这一成就不仅展示了Figure AI在技术研发方面的强大实力,也为其未来的发展奠定了
    的头像 发表于 02-06 14:08 798次阅读

    GPU是如何训练AI大模型的

    AI模型的训练过程中,大量的计算工作集中在矩阵乘法、向量加法和激活函数等运算上。这些运算正是GPU所擅长的。接下来,AI部落小编带您了解GPU是如何训练
    的头像 发表于 12-19 17:54 1392次阅读