0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Cadence引领AI浪潮,探索芯片设计智能之路

Cadence楷登 来源:Cadence楷登 2024-04-03 14:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

3 月 28 日-29 日,2024 国际集成电路展览会暨研讨会(IIC Shanghai)在上海成功举行。此次盛会汇聚了集成电路产业的众多领军人物,共同探寻和把握集成电路产业的发展脉络。

在 29 日举行的 2024 中国 IC 领袖峰会上,Cadence 数字产品资深高级总监刘淼发表了题为《当汽车电子遇见 3D-IC》的精彩演讲;而在同期举行的主题技术论坛上,Cadence 资深技术支持总监王辉、Cadence 资深产品技术销售经理万理也分别发表了题为《Cadence Optimity——利用 AI 应对系统级分析挑战》《Cadence AI——芯片级到系统级的全栈式智能 EDA 解决方案》的精彩演讲。

当汽车电子遇见 3D-IC

在 2024 中国 IC 领袖峰会上,刘淼阐述了汽车电子与 3D-IC 结合的未来趋势,深入剖析了当前电子世界的主要驱动力,并分享了 Cadence 的创新解决方案。他表示:“创新是我们的基因,我们 30% 的投资用于研发,这也支撑了 Cadence 在过去三年推出了 20 个重量级的新产品。”

刘淼认为,在技术驱动因素对多个行业的影响下,半导体行业正经历前所未有的快速增长。尽管 2023 年全球半导体市场有所下滑,但随后强劲复苏,预计在今年将有超过 10% 的增长率。其中,汽车电子技术的进步将对行业的发展起到重要推动作用。

1

Cadence 的策略是确保客户成功

在介绍 Cadence 策略时,刘淼强调了三个同心圆概念:硅圈、系统圈和数据圈。三个圈相互关联,紧密结合,共同推动芯片、系统和数据的发展。

例如自动驾驶,既依赖导航和场景等海量数据,还需要高效安全的系统,包含硬件、软件和复杂的芯片,而硬件由越来越多、越来越复杂的芯片组成。

f71ea448-f17a-11ee-a297-92fbcf53809c.jpg

35 年来,Cadence 在 EDA 领域的优势主要体现在计算软件——计算机科学加数学,包括实现计算的硬件。无论是硅 EDA 和 IP、大数据系统设计和分析,还是人工智能(AI),Cadence 都展现了强大实力。

他指出,如今人工智能已成为一种新的流行,而作为矩阵乘法的神经网络推理,利用反向传播训练神经网络能实现非线性共轭梯度优化,如 Cadence 的 Innovus。Cadence 的丰富经验不仅可用于硅,还可以用于所有系统和 AI,甚至是将 EDA 计算软件用于生物模拟

2

汽车电子挑战和 Cadence 设计流程

刘淼表示,电动汽车已经成为中国出口最强劲的引擎,而汽车电子是电动汽车最重要的组成部分之一,为了满足电动汽车越来越高的要求,汽车电子也不得不面对越来越复杂的挑战。这些挑战来源于安全、可靠和质量三个方面的要求,例如,更先进的工艺节点,更多的安全岛机制,更及时的通讯速度,更长的使用寿命,和更大规模的数据计算。

作为汽车电子数字解决方案驱动者,Cadence 与车规芯片厂商、新势力塑造者、创新创业者合作,为他们提供服务、软件、硬件和 IP。

Cadence 的安全意图格式 USF(统一安全格式)是一种与功能安全数据互操作性框架 IEEE P2815 保持一致的格式。USF 贯穿不同设计阶段和产品,确保在整个设计流程中体现安全意图。从预先编写的 USF 文件或 Mida 的 FMEDA 分析开始,能够将 USF 结果交付给相应的验证、实施、混合信号/模拟设计流程,还可以在不同设计团队间轻松交换。

f73661b4-f17a-11ee-a297-92fbcf53809c.jpg

刘淼也做了小小的技术普及,比如数字实现中的安全功能的两个基本应用:TMR 和 DCLS。TMR 通过克隆原始触发器为具有投票逻辑的三元组提供投票机制,以检测和纠正可能的逻辑值错误,增强系统容错能力并提高可靠性。DCLS 则通过双时钟锁定步进方式确保模块级冗余设计,进一步提高系统可靠性。Cadence 完整的 USF 物理实现流程有助于实现车规数字设计。

f769a650-f17a-11ee-a297-92fbcf53809c.jpg

刘淼还介绍了由中国研发团队实现的任意边界的 DCLS 布局与隔离和检查,这一全新的技术,不光服务了中国的客户,还支撑了 Cadence 在欧洲和北美的车规芯片客户。

Cadnece 在 2023 年推出的最新的带着机器学习加持的 Voltus Insight 电源完整性分析方案。这个全新的分析方案可以和实现工具 Innovus 完美地结合起来,让用户基本无感的,在实现过程中修复绝大部分的压降违例,从而极大提高汽车电子的可靠性,减少 ECO 时间,降低设计成本。

3

后摩尔和超越摩尔时代的 3D-IC

刘淼还从封装级 3D-IC 和晶圆级 3D-IC、同构设计与异构设计、3D-IC 路线图和挑战、键合密度、2.5D 到 3D 等角度强调了后摩尔时代 3D-IC 的重要性。他指出,随着摩尔定律逐渐失效,晶圆级 3D-IC已成为行业的焦点。Cadence既支持封装级、晶圆级 3D-IC,也支持同构和异构设计。从 2.5D 到 3D,其铜-铜键合密度提升了 1000 倍,而传输距离却降低了接近 50 倍,这一先进性,将极大地丰富系统公司从系统方面提升芯片性能的手段。

f78376ca-f17a-11ee-a297-92fbcf53809c.png

所以,Cadence 在晶圆级 3D-IC 上取得了长足进展,推出了基于 3D 混合布局的逻辑流内存、适用于同质和非同质芯片组的强大的 3D Mixed Placer。为应对 2.5D 到 3D-IC 的挑战,Cadence 推出了业界首个集成的高容量统一的 Integrity 3D-IC 平台,可在单个统一驾驶舱中进行 3D 设计规划、实施和系统分析。

刘淼最后表示,Cadence 的智能系统设计战略是以计算软件为核心开发的 AI 和算法解决方案,正在扩展到新的系统域。Cadence 还致力于在核心 EDA 和关键 IP 上执行这一战略,并支持云端广泛应用,以实现普适性和可扩展性。

利用 AI 应对系统级分析挑战

在 Chiplet 与先进封装技术研讨会上,Cadence 资深技术支持总监王辉分享了如何利用 AI 技术应对系统级分析挑战,介绍了 Cadence 的 OptimalityExplorer智能系统优化助力系统设计突破与创新的能力。

1

应对不断增加的复杂性和规模挑战

王辉指出,随着系统设计复杂性和规模不断增加,传统设计优化方法已难以满足需求,需要用AI技术来应对挑战。OptimalityExplorer 能加速实现最佳系统级设计性能,为设计师提供强大支持,实现平均 10 倍的设计收敛速度。

f7b907d6-f17a-11ee-a297-92fbcf53809c.jpg

他解释道,作为智能系统资源管理器,OptimalityExplorer 不仅具备快速确定最佳电气性能的能力,还能探索完整设计空间,避免次优局部极小值和极大值,将生产力平均提高 10 倍以上。

OptimalityExplorer 可扩展解决方案采用AI驱动的多物理优化技术,涵盖模拟、优化和签核等多个方面;突破性算法 Cadence Cerebrus 系统级探索涵盖芯片、封装、板和外壳,能够更全面考虑系统设计的各个方面,实现更优异的性能。

2

AI 新技术为实际设计赋能

谈到 AI 新技术,王辉强调了Optimality Explorer的强化学习优化能力。与传统设计优化方法相比,它利用强化学习技术预测下一个样本,能更高效地找到最优解。这种“现在到未来”的方案可以使设计师更快获得满意的设计结果。

OptimalityExplorer 采用突破性的机器学习(ML)算法,以实现最小采样、强化学习技术、全局最优解决方案和首过成功。在提高设计生产力方面,吞吐量提高了 100 倍,实现了大规模并行化和线性可扩展性,且支持云就绪。其应用可扩展到电路图、3D 工作台、3D 布局等多物理场,适用于所有设计阶段。

f7c70bf6-f17a-11ee-a297-92fbcf53809c.jpg

3

实例展现 OptimalityExplorer 强大能力

王辉通过实例展示了 OptimalityExplorer 在实际设计中的应用。从 AI 算法启动设计样本,利用模拟引擎进行分析;由 ML 模型基于初始数据点制定回归模型,优化设计参数并启动新案例。新模拟结果进一步完善了 ML 模型,提高了决策质量,效率提升了 10 倍,接近或优于人类驱动流程。

f7d7ef02-f17a-11ee-a297-92fbcf53809c.png

目前,OptimalityExplorer 已成功应用于多个系统设计分析与优化实例,如 112Gbps PAM4 通道优化、高维天线优化、三频微带天线参数优化、FPC 差分对参数优化以及 SI/PIRF/天线应用优化,均提升了迭代收敛速度,并显著提高了性能。

王辉表示,多位行业专家已对 Cadence 的 Optimality Explorer 赞赏有加,认为 Optimality Explorer 和 Clarity3D Solver 等工具帮助他们更快地找到最佳参数配置,加速了产品上市。

他最后表示,通过使用 OptimalityExplorer 等先进工具,设计师能够更好地应对系统级分析挑战,推动系统设计的不断创新与进步。

芯片级到系统级全栈式智能 EDA 解决方案

在 EDA 与 IC 设计论坛上,万理分享了芯片级到系统级全栈式智能 EDA 解决方案以及如何通过 AI 驱动的优化,实现系统设计的革命性突破。

1

人工智能正在改变设计面貌

万理表示,智能系统时代面临更多挑战,工艺演进使芯片复杂度不断增加,传统设计理念和方法已无法有效应对。利用 AI 驱动的优化能够实现强化学习、卷积神经网络、大型语言模型等;模拟与分析能够涵盖逻辑、电路、SI/PI、CFD、Bio 等多个应用,而计算硬件则适用于 CPUGPUFPGA、定制等多种类型设计。

他指出,AI 不仅是人力的补充,从手动电路设计到今天的自动化 RTL 设计重用,每次突破效率都提升了 10 倍;2030 年将再提升 10 倍以上。

f83a8b8a-f17a-11ee-a297-92fbcf53809c.jpg

他解释说,手动芯片设计优化要从数以百万计的组合中输出,凭借非数值方法和设计师直觉需要 3-6 个月才能达到次优 PPA。AI 可以实现基于现有流程的强化学习,提高电子产品的生产力和质量,并不断改进结果,缩短获得成果的时间。

f8749dde-f17a-11ee-a297-92fbcf53809c.png

2

Cadence AI 解决方案为系统设计赋能

Cadence 率先推出了业界首个芯片级到系统级全栈式AI解决方案 Cadence.AI,包括 Cadence Joint Enterprise Data 和 AI(JedAI)Platform 大数据管理、Cadence Cerebrus Intelligent Chip Explorer 数字物理实现、Virtuoso Studio 模拟开发设计、Verisium AI-Driven Verification Platform 验证、Allegro X AI Technology 系统设计以及Optimality Intelligent System Explorer 系统优化等六大平台。

万理说,Cadence.AI 生成式 AI 技术、JedAI Platform 和一系列 AI 增强工具都在为系统设计提供强大支持,有助于个人和团队实现 IP 和 SoC 创建,满足 AI 驱动的验证、调试、实施和 PPA 优化的生产力需求。

Cadence 的 Joint Enterprise Data 和 AI Platform 可以管理芯片设计数据模型,实现自动选型、智能芯片浏览和芯片设计重构。Cadence 下一代 AI 驱动的验证工作流程 Cadence Verisium 可实现失败测试分组等识别错误原因等功能。

f89875c4-f17a-11ee-a297-92fbcf53809c.jpg

Virtuoso Studio 可以进行 AI 驱动的自定义设计,实现电路优化和布局生成。而采用 Allegro X AI 的 AI 驱动的 PCB 设计可将数天的手动流程转缩短到数小时,效率提高 10 倍以上。

OptimityAI 驱动的系统分析平台可将汽车 PCB 验证效率提高 30 倍,改善 DDR4 BGA 封装插入损耗多达 134%,112G PAM4 SerDes 隔离性能提高 1260%;而 AI 驱动的 3D-IC 可优化 Chiplet 和封装设计。

万理最后总结道,Cadence.AI 以前所未有的方式定义了 EDA 2.0,引领半导体设计的未来,让工程师专注于更具创新性的工作,极大地提升工程团队的生产效率,让系统设计更加高效、智能和可持续。


审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5447

    文章

    12489

    浏览量

    372931
  • 汽车电子
    +关注

    关注

    3043

    文章

    8636

    浏览量

    172337
  • Cadence
    +关注

    关注

    68

    文章

    1000

    浏览量

    146273
  • 芯片设计
    +关注

    关注

    15

    文章

    1131

    浏览量

    56507
  • 自动驾驶
    +关注

    关注

    791

    文章

    14697

    浏览量

    176961

原文标题:IIC Shanghai 2024 | Cadence 引领 AI 浪潮,探索芯片设计智能之路

文章出处:【微信号:gh_fca7f1c2678a,微信公众号:Cadence楷登】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    探索;人类级别的理解能力;常识推理;现实世界的知识整合。 3、测试时计算 测试时计算(TTC)是指在模型推理阶段利用额外的计算资源来提升泛化性能。 4、具身智能与渗透式AI 1)具身智能
    发表于 09-18 15:31

    【「AI芯片:科技探索与AGI愿景」阅读体验】+具身智能芯片

    可以被称为第一人称视角。 第一人称视角:指一个实体本身在观察或经历事物时,所能够看到或感知到的角度。 二、AI感知技术与芯片 具身智能3个层次组成:感知层、认知层和决策行动层。 感知层: 感知层是具身
    发表于 09-18 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    AI被赋予了人的智能,科学家们希望在没有人类的引导下,AI自主的提出科学假设,诺贝尔奖级别的假设哦。 AI驱动科学被认为是科学发现的第五个范式了,与实验科学、理论科学、计算科学、数据驱
    发表于 09-17 11:45

    AI芯片:科技探索与AGI愿景》—— 勾勒计算未来的战略罗盘

    如果说算力是AGI的“燃料”,那么AI芯片就是制造燃料的“精炼厂”。本书的卓越之处在于,它超越了单纯的技术拆解,成功绘制了一幅从专用智能迈向通用智能的“战略路线图”。作者以
    发表于 09-17 09:32

    AI芯片:科技探索与AGI愿景》—— 深入硬件核心的AGI指南

    AI芯片:科技探索与AGI愿景》一书如同一张详尽的“藏宝图”,为读者指明了通往下一代人工智能的硬件之路。作者没有停留在空洞的概念层面,而是
    发表于 09-17 09:29

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片的需求和挑战

    景嘉微电子、海光信息技术、上海复旦微电子、上海壁仞科技、上海燧原科技、上海天数智芯半导体、墨芯人工智能、沐曦集成电路等。 在介绍完这些云端数据中心的AI芯片之后,还为我们介绍了边缘AI
    发表于 09-12 16:07

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    的不同。随着AI热潮的兴起,大脑的抽象模型已被提炼成各种的AI算法,并使用半导体芯片技术加以实现。 而大脑是一个由无数神经元通过突触连接而成的复杂网络,是极其复杂和精密的。大脑在本质上就是一台湿润的软组织
    发表于 09-06 19:12

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    AI芯片:科技探索与AGI愿景》这本书是张臣雄所著,由人民邮电出版社出版,它与《AI芯片:前沿技术与创新未来》一书是姊妹篇,由此可见作者在
    发表于 09-05 15:10

    边缘AI:技术浪潮席卷全球,TI引领芯片创新风潮

    电子发烧友网报道(文/李弯弯)在全球数字化转型的浪潮中,边缘AI已成为推动各行业智能化升级的核心力量。据市场调研机构数据,2024年全球边缘AI市场规模已达207.8亿美元,2025年
    的头像 发表于 09-03 09:03 6497次阅读

    AI 芯片浪潮下,职场晋升新契机?

    在科技飞速发展的当下,AI 芯片已然成为众多行业变革的核心驱动力。从互联网巨头的数据中心,到我们日常使用的智能手机、智能家居设备,AI
    发表于 08-19 08:58

    AI 边缘计算网关:开启智能新时代的钥匙​—龙兴物联

    在数字化浪潮的当下,AI 边缘计算网关正逐渐崭露头角,成为众多行业转型升级的关键力量。它宛如一座智能桥梁,一端紧密连接着各类物理设备,如传感器、摄像头、工业机器等,负责收集丰富的数据信息;另一端则
    发表于 08-09 16:40

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    :科技探索与 AGI 愿景》。 这本新书针对大模型技术浪潮,详细讲解了AI芯片的主流技术、挑战与创新解决方案,并介绍了下一代芯片工艺和颠覆性
    发表于 07-28 13:54

    Cadence推出Cerebrus AI Studio

    为了满足高复杂度半导体芯片设计中面临的时间节点紧迫、设计目标极具挑战性以及设计专家短缺等诸多挑战,Cadence 推出 Cadence Cerebrus AI Studio。这是业界首
    的头像 发表于 07-07 16:12 901次阅读

    AI驱动半导体与系统设计 Cadence开启设计智能化新时代

    催生变革 在 AI 驱动的时代浪潮下,各行业积极探索如何借助 AI 释放创造力、提升生产力。得益于摩尔定律,
    的头像 发表于 03-31 18:26 1471次阅读
    <b class='flag-5'>AI</b>驱动半导体与系统设计 <b class='flag-5'>Cadence</b>开启设计<b class='flag-5'>智能</b>化新时代

    AI赋能边缘网关:开启智能时代的新蓝海

    在数字化转型的浪潮中,AI与边缘计算的结合正掀起一场深刻的产业变革。边缘网关作为连接物理世界与数字世界的桥梁,在AI技术的加持下,正从简单的数据采集传输节点,进化为具备智能决策能力的边
    发表于 02-15 11:41