0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SWIR量子点活体成像技术

jf_64961214 来源: jf_64961214 作者: jf_64961214 2024-02-28 06:37 次阅读

wKgZomXeZA6AOFX-AARSrEBjJcQ306.png

图1 SWIR量子点用于下一代活体光学成像

为了了解生理和疾病中涉及的分子和细胞机制,生物医学领域的研究越来越多地以在体内非侵入性成像为主。然而,当对整个生物进行成像时,仍然存在一些会降低荧光成像灵敏度、采集速度和空间分辨率的生物障碍,如组织或细胞的自身荧光会增加背景信号,降低对比度,从而降低灵敏度;血液和其他组织对激发和发射光的吸收和散射,会限制信号检测和影响采集速度;散射会限制作为深度函数的空间分辨率,使获得的图像模糊。

短波红外区域成像(SWIR;1000 – 2000nm)可同时解决所有这些挑战,生物组织在SWIR区域的最小自荧光会增加灵敏度,而由血液和其他结构散射和吸收造成的光衰减也显著减少,使成像具有高时空分辨率和穿透深度。然而,由于缺少多功能和功能性SWIR发光材料,使生物医学研究普遍采用SWIR成像技术受阻。

基于此,美国麻省理工Oliver T. Bruns课题组介绍了一种高质量SWIR发光的基于InAs的 Core–Shell (CS)和 Core–Shell–Shell (CSS)量子点(Quantum Dots, QDs)材料,它们可以很容易地为各种功能成像应用进行修改,其发射范围大小可调,并且比先前的SWIR探针具有更高的发射量子效率。

为了展示这种SWIR量子点前所未有的穿透深、空间分辨率高、多色成像和快速采集等优点, 该课题组展示了三种不同的表面涂层,如图1,以此量化小鼠体内几个器官同时和实时的脂蛋白代谢更替率,以及清醒和不受约束动物的心跳和呼吸率,并生成小鼠大脑血管系统详细的三维定量血流图。

wKgaomXeZA-AL70lAAI5qeaoZ0E359.png

图2 SWIR量子点发射光谱

如图1所示,该课题组以InAs作为起始材料,覆盖由更高带隙材料组成的壳层,产生各种宽吸收、明亮且稳定发光的InAs CS (InAs - CdSe和InAs - CdS)和CSS (InAs - CdSe - CdS和InAs - CdSe - ZnSe)量子点。这些量子点发射光谱如图2。

wKgZomXeZA-AYWy0AAXZ7vMal-o821.png

图3 在麻醉和清醒小鼠中使用QD磷脂胶束的SWIR成像以及监测的心率和呼吸频率

SWIR QD磷脂胶束允许长时间的血液循环,从而实现血管造影和相关应用,如能够评估和定量镇静和清醒小鼠的心率和呼吸,图3中展示了在麻醉和清醒小鼠中使用QD磷脂胶束的SWIR成像以及监测的心率和呼吸频率。

wKgaomXeZBCAREpYAAOVbNfCdsg839.png

图4 SWIR QD纳米粒代谢成像

将量子点整合到脂蛋白(SWIR量子点纳米粒)中,可以实时成像激活组织和器官的能量代谢,如图4。

wKgaomXeZBCAT2kDABd3xRfGFCg814.png

图5 QD复合粒子的活体成像

此外,这些SWIR QD复合粒子使我们能够通过在活体显微镜中跟踪单个复合颗粒来量化大脑血管中的血流,这允许可视化健康血管和肿瘤边缘血管中血流的显著差异,具有足够的空间和时间分辨率来测量单个毛细血管的流量。

其中,为了探测CS 和CSS QDs的900nm-1300nm波段的发射光谱,该课题组采用了普林斯顿仪器液氮制冷线性InGaAs OMA V(现PyLoN IR)相机和SP300i(现HRS300)光谱仪进行采集探测。

wKgZomXeZBGADuuzAAFqphdGIwI083.png

wKgaomXeZBGAOv7jAABviYjyHSY794.png

该课题组采用普林斯顿仪器的NIRvana相机与多种滤波片结合采集上图3和图4中的宏观的SWIR图像,还通过将NIRvana连接到显微镜的侧出口采集图5中的微观上的活体SWIR图像。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    265

    浏览量

    31288
  • SWIR
    +关注

    关注

    0

    文章

    32

    浏览量

    4774
收藏 人收藏

    评论

    相关推荐

    利用偏振来改善量子成像

    也会被调整。 去年五月,加州理工学院的研究人员展示了这种纠缠如何使经典光学显微镜的分辨率加倍,同时还能防止成像系统的光损坏脆弱的生物样本。现在,同一个团队改进了这项技术,使量子成像整个
    的头像 发表于 04-10 06:40 62次阅读
    利用偏振来改善<b class='flag-5'>量子</b><b class='flag-5'>成像</b>

    量子点红外探测成像技术发展现状

    在性能与InGaAs芯片相当的前提下,基于量子点的成像芯片的成本不到其1%,有望实现短波红外成像在消费级领域的应用。
    发表于 04-01 11:44 295次阅读
    <b class='flag-5'>量子</b>点红外探测<b class='flag-5'>成像</b><b class='flag-5'>技术</b>发展现状

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    首先感谢发烧友提供的试读机会。 略读一周,感触颇深。首先量子计算机作为一种前沿技术,正逐步展现出其巨大的潜力,预示着未来社会和技术领域的深刻变革。下面,我将从几个方面探讨量子计算机如
    发表于 03-13 19:28

    量子

    可以模拟原子和分子之间的相互作用,帮助科学家设计新材料、药物,甚至加速新材料的发现过程。这将有助于推动科学研究的进展,加快新技术的开发。 总的来说,量子计算机的梦想是通过利用量子力学的奇特性质,解决传统
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    如何生产制造。。。。。。 近来通过阅读《量子计算机—重构未来》一书,结合网络资料,了解了一点点量子叠加知识,分享给大家。 先提一下电子计算机,电子计算机使用二进制表示信息数据,二进制的信息单位是比特(bit
    发表于 03-13 17:19

    光谷实验室近日宣布其研发的胶体量子成像芯片已实现短波红外成像

    一颗黄豆大小的芯片,利用新技术胶体量子点红外探测成像做成“视觉芯片”,装到手机、检测器上,可以“穿透”介质,看到肉眼看不到的“真相”。
    的头像 发表于 03-13 10:46 338次阅读

    量子计算机重构未来 | 阅读体验】第二章关键知识

    本帖最后由 oxlm_1 于 2024-3-6 23:20 编辑 之所以将第二章单独拿出来,是因为在阅读过程中,发现第二章知识较多,理解起来比较耗时间。 第二章的主要知识量子
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算机

    感觉量子技术神奇神秘,希望通过阅读此书来认识量子计算机。 先浏览一下目录: 通过目录,基本可以确定这是一本关于量子计算机的科普书籍,主要包括什么是
    发表于 03-05 17:37

    量子计算机重构未来 | 阅读体验】初探

    ,对于量子计算机的实现更加好奇,以至于申请试读该书。 当收到这本书时,自己咯噔了一下,为何这么薄,书这么小?技术书籍不应该随随便便四五百页吗?但是当我打开这本书的介绍时,我明白了,这本书并不是纯粹的技术
    发表于 03-04 23:09

    量子计算机 未来希望

    自己从事语音识别产品设计开发,而量子技术量子计算机必将在自然语言处理方面实现重大突破,想通过此书学习量子计算技术,储备知识,谢谢!
    发表于 02-01 12:51

    穿越光谱:短波红外成像技术的崭新时代

    前言在当今快速发展的科技世界中,短波红外成像技术SWIR)正逐渐崭露头角,引领着多个领域的革命性变革。SWIR技术是一项基于红外辐射的先进
    的头像 发表于 10-10 09:33 577次阅读
    穿越光谱:短波红外<b class='flag-5'>成像</b><b class='flag-5'>技术</b>的崭新时代

    红外成像技术及应用

    62页PPT详细介绍红外成像技术及应用
    发表于 09-27 07:38

    量子增强非干涉定量相位成像原理是什么

    光束中的量子相关,光子在其中表现出一定的合作,可以超越这些限制。虽然通过一阶干涉在相位估计中获得的量子优势已经得到了很好的理解,但干涉方案不适合多参数宽场成像,需要对扩展样品进行光栅扫描。
    发表于 08-04 10:55 332次阅读
    <b class='flag-5'>量子</b>增强非干涉定量相位<b class='flag-5'>成像</b>原理是什么

    滨松科研级相机量子领域应用案例:量子关联成像

      量子关联成像,是基于双光子复合探测恢复待测物体空间信息的一种新型成像技术,其物质基础是纠缠的光子对。 案例介绍 推荐相机 案例:经典关联成像
    的头像 发表于 06-15 06:50 299次阅读
    滨松科研级相机<b class='flag-5'>量子</b>领域应用案例:<b class='flag-5'>量子</b>关联<b class='flag-5'>成像</b>