0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅SIC将会发力电动汽车?

qq876811522 来源:知芯之道 2024-01-29 14:46 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

SIC将会发力智能车

01

碳化硅

碳化硅在功率半导体市场(尤其是电动汽车)中越来越受欢迎,但对于许多应用来说仍然过于昂贵。

原因很容易理解,但直到最近,碳化硅在很大程度上还是一种不够成熟技术,不值得投资。现在,随着对可在高压应用中工作的芯片的需求不断增长,SiC 受到了越来越多的关注。与硅功率器件的其他潜在替代品不同,SiC 具有熟悉的优势。

SiC 最初用于晶体收音机中的检测器二极管,是最早具有商业价值的半导体之一。商用 SiC JFET 自 2008 年起就已上市,在极端环境的电子产品中特别有用。SiC MOSFET 于 2011 年实现商业化。该材料具有 3.26 eV 的中等带隙,击穿电压是硅的 10 倍。

不幸的是,SiC 的制造也非常困难。日立能源全球产品管理副总裁托比亚斯·凯勒 (Tobias Keller) 解释说,标准的直拉法 (CZ) 增长方法并不可行。CZ 生长在二氧化硅坩埚中将硅在约 1500°C 的温度下熔化,但碳化硅的熔点高于 2700°C。

SiC 晶体通常通过Lely 方法生长。SiC 粉末在氩气气氛中加热到 2500°C 以上,并升华到晶种上。该过程给出了足够的结果,但容易出现缺陷且难以控制。对传入的 SiC 晶圆进行检查的工程师通常会发现由于堆叠错误和其他缺陷而导致的大量“死区”。

SiC 器件构建在针对预期工作电压进行优化的定制外延器件层上,较厚的外延层可以承受更高的电压,但它们也往往有更多的缺陷。在过去两年中,晶圆质量的提高和死区的早期识别使整体良率提高了 30%。

02

用于更高迁移率

SiC MOSFET 的更好电介质进一步受到栅极氧化物/碳化物界面质量普遍较差的限制。在 IEEE 电子器件会议 (IEDM) 上展示的工作中,日本京都大学和大阪大学的研究员 T. Kimoto 及其同事解释说,界面处的碳-碳缺陷似乎是由 SiC 的直接氧化造成的。这些缺陷位于 SiC 导带边缘附近,它们会增加沟道电阻并导致成品器件的阈值电压漂移。

作为 SiC 氧化的替代方案,Kimoto 的研究小组首先用氢等离子体蚀刻表面,然后通过 CVD 沉积 SiO2,然后对界面进行氮化。该工艺降低了陷阱密度,并使反型层电子迁移率在 10V 栅极偏压下增加了一倍以上,达到 80 cm²/V-sec。

一种未命名的高 k 介电化合物也可以与 SiC 形成低缺陷界面,而无需 SiO2所需的钝化步骤。与硅器件一样,SiC MOSFET 使用高 k 栅极电介质也会增加给定电容下的物理厚度,从而减少栅极漏电流。

ac4b263e-bb5c-11ee-8b88-92fbcf53809c.png

SiC 载流子的较差迁移率给器件设计人员带来了另一个挑战。即使经过几十年的努力,通过优化栅极电介质实现的最佳迁移率仍然比硅低10倍。因此,沟道电阻相应地比硅高10倍。

在功率器件中,低迁移率限制了性能和耐用性。器件电阻和开关损耗直接影响电动汽车的续航里程等参数。虽然注入掺杂剂和结构修改可以降低沟道电阻,但这样做可能通过增加电流密度来减少短路耐受时间。

短路耐受时间是功率器件的重要安全参数。如果设备因任何原因发生短路,它需要存活足够长的时间才能使保护电路做出响应。故障不仅会导致电力负载永久性损坏,还会导致用户受伤、火灾和财产损失。确切的要求取决于保护电路的设计,但通常为 5 至 10 微秒。随着电流密度的增加,短路条件下的温度也会增加,并且耐受时间会减少。

SiC MOSFET 的商业采用进展缓慢,部分原因是这些器件的耐受时间往往比类似额定硅器件短。因此,设计人员希望改变沟道电阻和电流密度之间的关系。是否可以在不将电流密度增加到危险水平的情况下降低电阻。

一种可能的解决方案是减少栅极偏压,同时减少氧化物厚度。更薄的氧化物可以改善沟道的控制(如硅 MOSFET 一样),从而允许较低的电压运行。该解决方案几乎不需要对制造过程进行任何改变。虽然对具有薄电介质的 SiC 器件的研究很少,但硅器件使用薄至 5 nm 的氧化物,而不会产生过度的隧道效应。此外,如上所述,使用高k电介质可以提供更好的沟道控制,同时保持物理厚度。

纽约州立大学理工学院的 Dongyoung Kim 和 Woongje Sung 提出了第二种替代方案,旨在通过增加有效沟道厚度来降低电流密度。他们使用 4° 倾斜角注入深 P 阱,利用沿 <0001> SiC 晶格方向的离子沟道。这种方法只需要对制造工艺进行微小的改变,因为深井注入使用与传统井相同的掩模。由此产生的器件将最大漏极电流降低了约 2.7 倍,并将耐受时间延长了四倍。

为了解决类似的问题,硅行业转向了现在无处不在的 finFET。增加恒定电流下的沟道面积会降低电流密度。普渡大学的研究人员展示了一种具有多晶硅栅极和多个亚微米鳍片的 SiC 三栅极 MOSFET,实现了特定沟道电阻降低 3.6 倍。

ac721ce4-bb5c-11ee-8b88-92fbcf53809c.png

虽然尚不清楚功率器件行业将多快采用像 finFET 这样激进的架构,但 SiC 的高击穿电压是一个引人注目的优势。希望实现这一优势的制造商需要找到解决方案来应对低迁移率和高电流密度带来的挑战。



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12550

    浏览量

    236216
  • 功率半导体
    +关注

    关注

    23

    文章

    1405

    浏览量

    45046
  • FinFET
    +关注

    关注

    12

    文章

    259

    浏览量

    92020
  • 碳化硅
    +关注

    关注

    25

    文章

    3305

    浏览量

    51710
  • 阈值电压
    +关注

    关注

    0

    文章

    98

    浏览量

    52392

原文标题:SIC将会发力智能车

文章出处:【微信号:汽车半导体情报局,微信公众号:汽车半导体情报局】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    探索碳化硅如何改变能源系统

    作者:Michael Williams, Shawn Luke 碳化硅 (SiC) 已成为各行各业提高效率和推动脱碳的基石。碳化硅是高级电力系统的推动剂,可满足全球对可再生能源、电动汽车
    的头像 发表于 10-02 17:25 1403次阅读

    碳化硅在电机驱动中的应用

    今天碳化硅器件已经在多种应用中取得商业的成功。碳化硅MOSFET已被证明是硅IGBT在太阳能、储能系统、电动汽车充电器和电动汽车等领域的商业可行替代品。
    的头像 发表于 08-29 14:38 6493次阅读
    <b class='flag-5'>碳化硅</b>在电机驱动中的应用

    EAB450M12XM3全碳化硅半桥功率模块CREE

    EAB450M12XM3全碳化硅半桥功率模块CREEEAB450M12XM3是Wolfspeed(原CREE科锐)生产的1200V、450A全碳化硅半桥功率模块,致力于高功率、高效化技术应用打造
    发表于 06-25 09:13

    基本股份SiC功率模块的两电平全碳化硅混合逆变器解决方案

    倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,
    的头像 发表于 06-24 17:26 415次阅读

    SiC碳化硅MOSFET时代的驱动供电解决方案:基本BTP1521P电源芯片

    倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,
    的头像 发表于 06-19 16:57 1027次阅读
    <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET时代的驱动供电解决方案:基本BTP1521P电源芯片

    碳化硅功率器件在汽车领域的应用

    随着全球汽车行业向电动化、智能化和轻量化的快速转型,碳化硅SiC)功率器件以其优越的性能,正日益成为汽车电子领域的重要组成部分。特别是在
    的头像 发表于 05-29 17:32 984次阅读

    国产SiC碳化硅MOSFET在有源滤波器(APF)中的革新应用

    倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,
    的头像 发表于 05-10 13:38 743次阅读
    国产<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET在有源滤波器(APF)中的革新应用

    基本半导体碳化硅SiC)MOSFET低关断损耗(Eoff)特性的应用优势

    BASiC基本股份半导体的碳化硅SiC)MOSFET凭借其低关断损耗(Eoff)特性,在以下应用中展现出显著优势: 倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC
    的头像 发表于 05-04 09:42 666次阅读
    基本半导体<b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)MOSFET低关断损耗(Eoff)特性的应用优势

    基于国产碳化硅SiC MOSFET的高效热泵与商用空调系统解决方案

    茜 微信&手机:13266663313 倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅
    的头像 发表于 05-03 10:45 506次阅读
    基于国产<b class='flag-5'>碳化硅</b><b class='flag-5'>SiC</b> MOSFET的高效热泵与商用空调系统解决方案

    碳化硅功率器件有哪些特点

    随着全球对绿色能源和高效能电子设备的需求不断增加,宽禁带半导体材料逐渐进入了人们的视野。其中,碳化硅SiC)因其出色的性能而受到广泛关注。碳化硅功率器件在电力电子、可再生能源以及电动汽车
    的头像 发表于 04-21 17:55 992次阅读

    碳化硅SiC)MOSFET替代硅基IGBT常见问题Q&amp;A

    碳化硅SiC)MOSFET作为替代传统硅基IGBT的新一代功率器件,在电动汽车、可再生能源、高频电源等领域展现出显著优势,随着国产碳化硅MOSFET技术、成本及供应链都日趋完善,国产
    的头像 发表于 03-13 11:12 1363次阅读
    <b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)MOSFET替代硅基IGBT常见问题Q&amp;A

    为什么碳化硅Cascode JFET 可以轻松实现硅到碳化硅的过渡?

    碳化硅具备多项技术优势(图1),这使其在电动汽车、数据中心,以及直流快充、储能系统和光伏逆变器等能源基础设施领域崭露头角,成为众多应用中的新兴首选技术。 表1 硅器件(Si)与碳化硅SiC
    发表于 03-12 11:31 847次阅读
    为什么<b class='flag-5'>碳化硅</b>Cascode JFET 可以轻松实现硅到<b class='flag-5'>碳化硅</b>的过渡?

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN!

    BASiC基本半导体40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN! BASiC基本半导体40mR/650V SiC 碳化硅M
    发表于 01-22 10:43

    SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用

    *附件:国产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用.pdf
    发表于 01-20 14:19

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    具有决定性的影响。因此,深入理解栅极氧化层的特性,并掌握其可靠性测试方法,对于推动碳化硅 MOSFET的应用和发展具有重要意义。今天的“SiC科普小课堂”将聚焦于“栅极氧化层”这一新话题:“什么是栅极
    发表于 01-04 12:37