0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

非制冷势垒型InAsSb基高速中波红外探测器开发

MEMS 来源:红外芯闻 2024-01-18 09:13 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。

据麦姆斯咨询报道,近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。

本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。

材料生长、器件制备和测试

通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。

通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-X N5247B,America)对器件进行射频响应特性测试。

结果与讨论

材料质量表征

图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。

e6ff943c-b552-11ee-8b88-92fbcf53809c.png

图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片

器件的变温暗电流特性

图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。

e7128c86-b552-11ee-8b88-92fbcf53809c.png

图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线

器件暗电流的尺寸效应

由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ω·cm。

e725a65e-b552-11ee-8b88-92fbcf53809c.png

图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线

器件的结电容

图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。

e73a2836-b552-11ee-8b88-92fbcf53809c.png

图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。

器件的射频响应特性

通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。

e749df9c-b552-11ee-8b88-92fbcf53809c.png

图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图

e757a230-b552-11ee-8b88-92fbcf53809c.png

图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线

图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60MHz-320 MHz之间而pBn探测器的截止频率落在70MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。

结论

通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ω·cm,对照的nBn器件的表面电阻率为3.1×10³ Ω·cm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ω·cm²和5.27 Ω·cm²。

探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 红外探测器
    +关注

    关注

    5

    文章

    310

    浏览量

    18950
  • 光通信
    +关注

    关注

    20

    文章

    982

    浏览量

    35225
  • 电感耦合
    +关注

    关注

    1

    文章

    69

    浏览量

    16356
  • 矢量网络分析仪

    关注

    2

    文章

    257

    浏览量

    22840
  • 信号接地
    +关注

    关注

    0

    文章

    11

    浏览量

    4738

原文标题:非制冷势垒型InAsSb基高速中波红外探测器

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    制冷红外探测器如何选择?中波与长波的全面对比

    红外探测技术通过捕捉物体发出的红外辐射实现全天候成像,其中制冷中波
    的头像 发表于 11-11 10:22 278次阅读
    <b class='flag-5'>制冷</b><b class='flag-5'>型</b><b class='flag-5'>红外</b><b class='flag-5'>探测器</b>如何选择?<b class='flag-5'>中波</b>与长波的全面对比

    氧化钒探测器:无人机吊舱红外热成像系统的革新之选

    制冷探测器凭借其突破性技术,正在重新定义无人机吊舱的热成像能力边界。 一、氧化钒材料:制冷探测器的性能跃升 传统热成像
    的头像 发表于 11-06 09:33 476次阅读

    中科院重庆研究院在可光调谐的新型肖特基红外探测器研究中获进展

    传统肖特基探测器可光调谐的肖特基红外探测器的对比 近日,中科院重庆绿色智能技术研究院微纳制造与系统集成研究中心在《创新》(The In
    的头像 发表于 10-21 09:26 169次阅读
    中科院重庆研究院在<b class='flag-5'>势</b><b class='flag-5'>垒</b>可光调谐的新型肖特基<b class='flag-5'>红外</b><b class='flag-5'>探测器</b>研究中获进展

    红外探测器“欢乐大比拼”:制冷vs制冷,看看谁更“牛”!

    在科技飞速发展的今天,红外探测器就像隐藏在暗处的“超级眼睛”,在安消防、工业检测、户外观测等众多领域发挥着不可或缺的作用。而在红外探测器的大家族中,
    的头像 发表于 10-16 10:21 536次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>“欢乐大比拼”:<b class='flag-5'>非</b><b class='flag-5'>制冷</b>vs<b class='flag-5'>制冷</b>,看看谁更“牛”!

    格物优信推出高速中波制冷红外热像仪

    格物优信隆重推出其高端重量级热像仪新品——中波制冷红外热像仪。此款产品专为高温及火焰测温而生,具备火焰可测 3000℃可测的卓越能力,在高温环境下表现尤为出色,是工业高温检测领域的理
    的头像 发表于 09-10 09:32 570次阅读

    高灵敏度氧化钒制冷探测器热成像机芯

    热成像技术在现代生活中发挥着越来越重要的作用。高灵敏度氧化钒制冷探测器KC-2R02U-15热成像机芯正是这一领域的一项先进产品。它采用氧化钒材料,具有高灵敏度和
    的头像 发表于 09-04 10:13 506次阅读

    零偏置硅肖特基探测器二极管 skyworksinc

    电子发烧友网为你提供()零偏置硅肖特基探测器二极管相关产品参数、数据手册,更有零偏置硅肖特基探测
    发表于 07-14 18:33
    零偏置硅肖特基<b class='flag-5'>势</b><b class='flag-5'>垒</b><b class='flag-5'>探测器</b>二极管 skyworksinc

    VirtualLab:通用探测器

    摘要 通用探测器是VirtualLab Fusion中来评估和输出电磁场任何信息的最通用工具。它能够提供不同域(空间域和空间频域)和坐标系(场与探测器位置坐标系)的信息。此外,通过使用非常灵活的内置
    发表于 06-12 08:59

    DZR185AC零偏压肖特基二极管探测器

    DZR185AC是一款由HEROTEK公司生产的零偏压肖特基二极管探测器,专为高频信号检测设计。其核心优势在于无需外部偏置电压即可工作,通过金属-半导体接触形成的肖特基实现信号检波。相比传统对数
    发表于 05-12 09:18

    红外探测器像元尺寸怎么选

    像元尺寸指的是在红外探测器芯片焦平面阵列上,每个像元的实际物理尺寸,通常以微米(μm)为单位。常见的规格有8μm、12μm、17μm、25μm等。像元尺寸直接影响着红外热成像组件的体积、成本以及成像
    的头像 发表于 04-01 16:43 1105次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸怎么选

    红外探测器像元尺寸详解

    红外探测器像元尺寸是红外热成像领域中的一个关键参数,它指的是在红外探测器芯片焦平面阵列上,每个像元的实际物理尺寸,通常以微米(μm)为单位来
    的头像 发表于 03-31 16:33 1532次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸详解

    红外探测器的分类介绍

    红外探测器,英文名称为Infrared Detector,其核心功能在于将不可见的红外辐射转变为可测量的电信号。红外辐射,作为电磁波的一种,其波长位于可见光与微波之间,超出了人眼的可见
    的头像 发表于 03-27 15:33 2015次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>的分类介绍

    科技大揭秘,红外热像仪的工作原理及应用

    红外热像仪是一种通过接收物体发射的红外辐射来对目标进行探测的设备。红外热像仪按工作温度可分为制冷
    的头像 发表于 03-10 14:07 984次阅读
    科技大揭秘,<b class='flag-5'>红外</b>热像仪的工作原理及应用

    用于光波导系统的均匀性探测器

    ,则重叠的模可以相干叠加、相干叠加或部分相干叠加。 对于部分相干叠加,可以通过输入相干时间(或从相干时间和长度计算复制)来指定相干程度。 **探测器功能:光瞳参数 ** 均匀性探测器
    发表于 12-20 10:30

    红外光束烟雾探测器

    光束烟感电子软件设计 反射光束感烟探测器,内置激光指针和数字指南,设计成人性化的认准方法。 内置微处理,可自我诊断和监视内部故障。 支持安装距离:8~160米。
    发表于 12-16 18:12