0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

陀螺仪LSM6DSV16X与AI集成(5)----6D方向检测功能

嵌入式单片机MCU开发 来源:嵌入式单片机MCU开发 作者:嵌入式单片机MCU开 2024-01-09 16:14 次阅读

概述

陀螺仪通常可以读取三个方向上的旋转,即绕X轴、Y轴和Z轴的旋转。每个方向上的旋转包括正向旋转和反向旋转,因此一共有六个位置。这六个位置分别是:1.X轴正向旋转、2.X轴反向旋转、3.Y轴正向旋转、4.Y轴反向旋转、5.Z轴正向旋转、6.Z轴反向旋转 通过检测陀螺仪在每个方向上的旋转,可以确定物体的旋转姿态和方向,从而用于导航、飞行控制等应用。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

视频教学

[https://www.bilibili.com/video/BV1jw41137Zo/

样品申请

[https://www.wjx.top/vm/OhcKxJk.aspx#]

源码下载

[https://download.csdn.net/download/qq_24312945/88719389]

生成STM32CUBEMX

用STM32CUBEMX生成例程,这里使用MCU为STM32WB55RG。 配置时钟树,配置时钟为32M。

串口配置

查看原理图,PB6和PB7设置为开发板的串口。

配置串口。

IIC配置

配置IIC为快速模式,速度为400k。

CS和SA0设置

串口重定向

打开魔术棒,勾选MicroLIB

在main.c中,添加头文件,若不添加会出现 identifier "FILE" is undefined报错。

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

函数声明和串口重定向:

/* USER CODE BEGIN PFP */
int fputc(int ch, FILE *f){
    HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);
    return ch;
}
/* USER CODE END PFP */

参考程序

[https://github.com/STMicroelectronics/lsm6dsv16x-pid/tree/main]

初始换管脚

由于需要向LSM6DSV16X_I2C_ADD_L写入以及为IIC模式。

所以使能CS为高电平,配置为IIC模式。 配置SA0为高电平。

printf("123123123");
  lsm6dsv16x_reset_t rst;
  stmdev_ctx_t dev_ctx;
  /* Initialize mems driver interface */
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.handle = &SENSOR_BUS;


  HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET);
  HAL_GPIO_WritePin(SA0_GPIO_Port, SA0_Pin, GPIO_PIN_RESET);

获取ID

可以向WHO_AM_I (0Fh)获取固定值,判断是否为0x70。

lsm6dsv16x_device_id_get为获取函数。

对应的获取ID驱动程序,如下所示。

/* Wait sensor boot time */
  platform_delay(BOOT_TIME);
  /* Check device ID */
  lsm6dsv16x_device_id_get(&dev_ctx, &whoamI);
    printf("LSM6DSV16X_ID=0x%x,whoamI=0x%x",LSM6DSV16X_ID,whoamI);
  if (whoamI != LSM6DSV16X_ID)
    while (1);

复位操作

可以向CTRL3 (12h)的SW_RESET寄存器写入1进行复位。

lsm6dsv16x_reset_set为重置函数。

对应的驱动程序,如下所示。

/* Restore default configuration */
  lsm6dsv16x_reset_set(&dev_ctx, LSM6DSV16X_RESTORE_CTRL_REGS);
  do {
    lsm6dsv16x_reset_get(&dev_ctx, &rst);
  } while (rst != LSM6DSV16X_READY);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL3 (12h)的BDU寄存器写入1进行开启。

对应的驱动程序,如下所示。

/* Enable Block Data Update */
  lsm6dsv16x_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

6D方向检测功能配置

1.使能六维位置检测功能,配置陀螺仪模块的中断引脚,使得当六维传感器检测到某种运动时,能够通过中断方式通知主控制器。

可以通过使能MD1_CFG (5Eh)中的INT1_6D开启6D事件。

pin_int.sixd = PROPERTY_ENABLE;
lsm6dsv16x_pin_int1_route_set(&dev_ctx, &pin_int);

2.使能中断,将中断配置应用到LSM6DSV16X模块上。 FUNCTIONS_ENABLE (50h)可以开启6D中断。

在 LSM6DSV16X 传感器的 TAP_CFG0 (56h) 寄存器中,LIR(Latched Interrupt Request)位用于控制中断请求的锁存。如果将 LIR 设为 0(默认值),则表示中断请求不锁存;如果设为 1,则中断请求被锁存。锁存中断意味着一旦中断被触发,它会保持其激活状态直到被明确地通过软件读取或清除。这通常用于确保不会错过任何中断事件,特别是在多任务环境中,其中一个中断可能会在处理另一个中断时发生。

irq.enable = 1;
irq.lir = 1;
lsm6dsv16x_interrupt_enable_set(&dev_ctx, irq);

选择滤波和角度阈值

滤波可以通过 TAP_CFG0 (56h) 设置低通滤波。

角度阈值可以通过 TAP_THS_6D (59h) 设置为60度,用于检测姿态变化。

设置滤波和角度阈值可用以下函数:

lsm6dsv16x_filt_sixd_feed_set(&dev_ctx, LSM6DSV16X_SIXD_FEED_LOW_PASS);
lsm6dsv16x_6d_threshold_set(&dev_ctx, LSM6DSV16X_DEG_60);

设置量程和速率

速率可以通过CTRL1 (10h)设置加速度速率。

设置加速度量程可以通过CTRL8 (17h)进行设置。

设置加速度的量程和速率可以使用如下函数。

/* Set Output Data Rate.*/
  lsm6dsv16x_xl_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_120Hz);
  /* Set full scale */
  lsm6dsv16x_xl_full_scale_set(&dev_ctx, LSM6DSV16X_2g);

获取所有中断源的状态

判断是否发生了六维传感器事件,如果有发生,则将不同方向的事件标志位按位组合起来,其中包括了传感器的各种状态,比如 FIFO 状态、自由落体、唤醒、六维方向、数据就绪等状态。然后通过一系列的操作和寄存器读写,获取嵌入式功能执行状态、传感器中枢状态等信息,并将这些信息也保存,最后将这些信息返回给主控。这些数据可以通过以下寄存器进行设置。

ALL_INT_SRC (1Dh) 为所有中断的源寄存器,D6D_IA变量包含了自由落体状态的信息。

D6D_SRC (47h) 用于六维方向识别,该寄存器包含了用于检测设备方向的相关信息。

每个位都对应一个方向,用于表示设备是否在相应的方向上运动。例如,如果XH位和YL位都被置位,则表示设备正在以X轴正方向向上运动,并且Y轴负方向朝下。通过读取D6D_SRC寄存器的值,可以了解设备当前的运动方向,从而进行相应的处理。LSM6DSV16X传感器中的方向检测是基于重力加速度和线性加速度的,因此需要在使用之前进行校准和配置,以适应不同的应用场景。

通过 int32_t lsm6dsv16x_all_sources_get(stmdev_ctx_t *ctx, lsm6dsv16x_all_sources_t *val) 函数可以获取所有中断源的状态。

lsm6dsv16x_all_sources_t status;

    /* Read output only if new xl value is available */
    lsm6dsv16x_all_sources_get(&dev_ctx, &status);

    if (status.six_d) {
            sixd_event_catched = (status.six_d    < < 6) |
                                 (status.six_d_zh < < 5) |
                                 (status.six_d_zl < < 4) |
                                 (status.six_d_yh < < 3) |
                                 (status.six_d_yl < < 2) |
                                  (status.six_d_xh < < 1) |
                                 (status.six_d_xl < < 0);
        }

发送相应信息

检查sixd_event_catched的第7位是否为1,如果第7位为1,表示检测到了六维传感器事件。

根据sixd_event_catched的具体数值,通过switch语句匹配不同的情况。每个情况对应着不同的六维传感器位置,并且针对每种情况都会生成相应的消息并调用tx_com函数发送消息。

最后,在处理完六维传感器事件后,将sixd_event_catched重置为0,以便下一次事件的检测。

/* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
        /* wait forever (6D event handle in irq handler) */
        lsm6dsv16x_all_sources_t status;

        /* Read output only if new xl value is available */
        lsm6dsv16x_all_sources_get(&dev_ctx, &status);

        if (status.six_d) {
            sixd_event_catched = (status.six_d    < < 6) |
                                                     (status.six_d_zh < < 5) |
                                                     (status.six_d_zl < < 4) |
                                                     (status.six_d_yh < < 3) |
                                                     (status.six_d_yl < < 2) |
                                                     (status.six_d_xh < < 1) |
                                                     (status.six_d_xl < < 0);
        }
        if (sixd_event_catched & 0x40) {

      switch (sixd_event_catched) {
      case 0x48:
        printf("6D Position A Y↑rn");
        break;
      case 0x41:
        printf("6D Position B X↓rn");
        break;
      case 0x42:
        printf("6D Position C X↑rn");
        break;
      case 0x44:
        printf("6D Position D Y↓rn");
        break;
      case 0x60:
        printf("6D Position E Z↑rn");
        break;
      case 0x50:
        printf("6D Position F Z↓rn");
        break;
      }
      sixd_event_catched = 0;
        }


    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

演示

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 陀螺仪
    +关注

    关注

    44

    文章

    741

    浏览量

    97844
  • stm32cubemx
    +关注

    关注

    5

    文章

    269

    浏览量

    14495
收藏 人收藏

    评论

    相关推荐

    陀螺仪LSM6DSV16XAI集成(6)----检测自由落体

    本文介绍如何初始化传感器并配置其参数,以便在检测到自由落体事件时发送通知。
    的头像 发表于 05-17 15:12 1265次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(6)----<b class='flag-5'>检测</b>自由落体

    意法半导体发布LSM6DSV32X 6轴惯性模块

    意法半导体近日发布了其最新的LSM6DSV32X 6轴惯性模块(IMU),该模块集成了高性能的加速度计和陀螺仪。加速度计的最大量程达到32g,而陀螺仪则具备高达4000度每秒(dps)
    的头像 发表于 05-13 09:59 214次阅读

    意法半导体推出一款LSM6DSV32X 6轴惯性模块(IMU)

    意法半导体的LSM6DSV32X 6轴惯性模块(IMU)集成一个满量程32g的大加速度计和一个满量程4000度每秒(dps)的陀螺仪,可测量高强度的运动和撞击,包括自由落体高度估算。
    的头像 发表于 05-09 10:35 276次阅读

    陀螺仪LSM6DSV16XAI集成(3)----读取融合算法输出的四元数

    LSM6DSV16X 特性涉及到的是一种低功耗的传感器融合算法(Sensor Fusion Low Power, SFLP). 低功耗传感器融合(SFLP)算法:
    的头像 发表于 12-18 10:53 707次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(3)----读取融合算法输出的四元数

    陀螺仪LSM6DSV16XAI集成(2)----姿态解算

    LSM6DSV16X包含三轴陀螺仪与三轴加速度计。
    的头像 发表于 12-18 10:51 895次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(2)----姿态解算

    陀螺仪LSM6DSV16XAI集成(1)----轮询获取陀螺仪数据

    本文将介绍如何使用 LSM6DSV16X 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取加速度、角速率和温度数据。读取到的数据
    的头像 发表于 12-18 10:49 824次阅读
    <b class='flag-5'>陀螺仪</b><b class='flag-5'>LSM6DSV16X</b>与<b class='flag-5'>AI</b><b class='flag-5'>集成</b>(1)----轮询获取<b class='flag-5'>陀螺仪</b>数据

    LSM6DS3的应用笔记

    本文档旨在提供 ST LSM6DS3 iNEMO 六轴惯性传感器模块相关的使用信息和应用提示。LSM6DS3 是系统级封装的 3D 数字加速度计和 3D 数字
    发表于 09-13 08:23

    LSM6DSL应用笔记

    本文档旨在提供 ST LSM6DSL iNEMO 六轴惯性传感器模块相关的使用信息和应用提示。LSM6DSL 是系统级封装的 3D 数字加速度计和 3D 数字
    发表于 09-13 08:17

    LSM6DSO的应用笔记

    本文档旨在提供 ST LSM6DSO iNEMO 六轴惯性传感器模块相关的使用信息和应用提示。LSM6DSO 是系统级封装的 3D 数字加速度计和 3D 数字
    发表于 09-13 08:05

    LSM6DSR iNEMO六轴惯性传感器模块相关资料

    本文档旨在提供 ST LSM6DSR iNEMO 六轴惯性传感器模块相关的使用信息和应用提示。LSM6DSR 是系统级封装的 3D 数字加速度计和 3D 数字
    发表于 09-13 07:11

    LSM6DSM的应用笔记

    本文档旨在提供 ST LSM6DSM iNEMO 六轴惯性传感器模块相关的使用信息和应用提示。LSM6DSM 是系统级封装的 3D 数字加速度计和 3D 数字
    发表于 09-13 06:15

    LSM6DS3 iNEMO六轴惯性传感器模块相关的使用信息和应用提示

    LSM6DS3:始终开启的 3D 加速度计和 3D 陀螺仪LSM6DS3 是系统级封装的 3D
    发表于 09-06 06:57

    LSM6DSL iNEMO六轴惯性传感器模块相关的使用信息和应用提示

    LSM6DSL 是系统级封装的 3D 数字加速度计和 3D 数字陀螺仪,具有数字 I2C/SPI 串口标准输出,在组合高性能工作模式下 6
    发表于 09-06 06:12

    LSM6DSM iNEMO六轴惯性传感器模块相关的使用信息和应用提示

    LSM6DSM 是系统级封装的 3D 数字加速度计和 3D 数字陀螺仪,具有数字 I2C/SPI 串口标准输出,组合工作在高性能模式下功耗只要 0.65mA。由于
    发表于 09-06 06:03

    ST LSM6DSV16X iNEMO惯性模块相关的使用信息和应用提示

    AN5763,LSM6DSV16X是一款ST的3 轴加速度计和 3 轴陀螺仪LSM6DSV16X 是系统级封装的 3 轴数字加速度计和 3 轴数字陀螺仪,具有数字 I²C、SPI
    发表于 08-31 11:12 0次下载