0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂离子电池气体成分表征方法简析

nigulafeng99 来源:电源系统智能管控 2023-12-29 15:06 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

背景

锂离子动力电池在化成、过充/过放、热失控、循环过程都会有气体发生。化成阶段,锂离子电池内部由于固态电解质界面膜(Solid Electrolyte Interface, SEI) 的形成会产生一定量的气体。气体的含量、气体种类和气体变化率等方面可以反映SEI形成的质量和程度,进而反映电池化成的好坏。过充/过放时,电解液在正负极被氧化还原而分解,正极材料氧析出等产生大量气体。过充/过放甚至会进一步引发热失控,发生链式反应,产生大量气体。电池在正常运行过程中,电极表面副反应不断进行,也会缓慢地产生气体。

在劣化严重的情况下,电池发生鼓包,影响到电池的安全和性能。气体成分和含量直接反映了电池内部副反应发生的程度,与电池的健康和安全状态密切相关。研究电池各阶段气体信号,定量表征及分析电池产气情况至关重要。当前锂离子电池气体的表征方法可以分为非原位和原位表征两种方式。

02

气体成分表征方法

2.1 气体成分非原位表征方法

目前,电池气体成分的方法多借助非原位表征的材料学分析手段,如图1所示,包含气相色谱质谱法(Gas Chromatography-Mass Spectrometry, GC-MS)[1],傅里叶变换红外光谱法(Fourier Transform-Infrared Spectroscopy, FT-IR)[2,3],核磁共振光谱(Nuclear Magnetic Resonance, NMR)[4-7]。

a1336dd2-a618-11ee-8b88-92fbcf53809c.png

图 1 气体成分监测方法

W. Kong等人[8] 将LiCoO2、LiMn2O4和LiFePO4三种正极材料的18650锂离子电池正常充电和过充至4.5 V和5.0 V,然后用注射器收集电池内部的气体并采用GC-MS测量了气体成分,如图1(a)所示。研究发现,在正常充电条件下,气体发生行为与正极材料类型无关。在过充条件下,阴极材料的氧化能力对气体种类和数量有显著影响。Fredrik Larsson等人[9]用7种不同类型锂离子电池进行了燃烧实验,用FIRT定量测量了电池燃烧所释放的气体,结果表明燃烧会产生大量的氟化氢(HF)和少量的氟化磷(POF3)有毒气体。Nina Laszczynski等人[10]对NCM811电池高压下电解质分解情况进行了研究,使用NMR等多种方法测量了电解质分解的气体成分,研究发现当截止电压从4.2 V增加到4.6 V时,O2和CO2的释放量随之增加。非原位的方法不能检测充放电循环中时间分辨率上电池产气的情况,需要在电池实验结束后在非大气暴露条件下通过破环性的方式获取电池内部气体进行定量测量。

2.2 气体成分原位表征方法

气体成分原位实时表征的方法采用在线/微分电化学质谱技术(Online/Differential Electrochemical Mass Spectrometry, O/DEMS)[1,11,12],原位拉曼光谱(In-situ Raman Spectra, IRS)[13,14]和非色散红外气体传感器(Nondispersive Infrared Gas Sensors, NDIR)[7,15,16]监测气体成分随电位和时间演变情况,在研究领域受到广泛关注。O/DEMS是将电化学反应池与质谱仪联用,可以实时检测电化学反应界面消耗或产生的气体和挥发性中间产物及最终产物,并进行定性和定量分析。N. Е. Galushkin等人[17]使用O/DEMS监测了NMC111电池在不同上截止电压和温度条件下循环过程中正负极产气的情况,如图1(b)。结果表明电解质分解会产生CO和H2气体,而CO2只在正极生成是正极原子晶格释放的O2与正极附近CO(电解液分解)反应的产物。

虽然O/DEMS可以原位测量气体成分,但是该方法需要载气装置将气体输送到质谱仪,这将引起电解质挥发,进而影响电池正常运行。Byambasuren Gerelt-Od等人[18]开发了用于电池分析的IRS分析系统,如图1(c)所示,其在商业电池上安装的玻璃窗进行激光散射,因此可以无干扰地跟踪电池内部电化学反应。研究结果表明满电状态的18650电池在25-45℃环境下存储,会逐渐产生H2, CH4, CO2和CO四种主要气体,过量的H2使电池存在安全隐患。Siqi Lyu等人[19]开发了基于NDIR的气体成分监测装置,将三种NDIR的CO2、CH4和C2H4气体传感器和开口的商业电池共同放在密封罐中如图1(d)所示,监测电池运行时三种气体的演化情况。结果表明,高电压会导致CO2生成量增加,而CH4和C2H4的生成量对温度更敏感。尽管IRS和NDIR以上两种方法可以实时监测商业电池内部气体成分的演化,但是都需要对电池进行较大规模的改造和破坏,并且需要连接大型的气体解析仪器,多用于短期产气机理解析。

2.3 气体成分原位采集方法

气体原位采集方法是通过对电池壳体进行设计,在电池壳体增加取气口,在不影响电池的动态工作过程的前提下,实现多次取气及检测分析,进而实现连续监测气体成分的演变。王绥军等人[20]设计了一个原位气体监测装置,其中电池内部通过导管连接四通阀,四通阀与压力传感器、气体采样口、真空阀连接,可随时记录电池内部压力,也可以通过气密针随时采取气体样品,分析气体组分,如图 2(a)所示。基于此方法该学者研究了钛酸锂电池在55℃循环过程和55℃搁置工况下内部压力、胀气体积、以及各组分气体含量的变化规律,并推导了可能的产气反应。Jan-Patrick Schmiegel等人[21]设计了带气体取样口的软包锂离子电池,其中单向气体取样口由鲁尔接口、GC进气垫和GC采样瓶盖组成并通过PP导管连接电池内部,如图 2(b)所示。该研究人员通过单向取样口多次取气研究了单次充放电循环间气体组分的演变。

a148315e-a618-11ee-8b88-92fbcf53809c.png

图 2气体成分原位采集方法

03

总结

当前气体成分表征方法较为丰富,但是大都需要依赖大型专业的分析设备,难以实现储能或者车载场景电池内部气体的实时检测。未来,长寿命的MEMS气体传感器、光纤气体传感器等微型传感器有望与大容量电池单体进行集成,实现电池内部气体的实时检测,进而为锂离子电池安全管控、健康管理提供新的方法。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80267
  • 动力电池
    +关注

    关注

    113

    文章

    4667

    浏览量

    81135
  • 电解液
    +关注

    关注

    10

    文章

    876

    浏览量

    23726
  • 固态电解质
    +关注

    关注

    0

    文章

    86

    浏览量

    5735

原文标题:锂离子电池气体成分表征方法

文章出处:【微信号:电源系统智能管控,微信公众号:电源系统智能管控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    锂离子电池是如何工作的?了解它的内部结构和制造过程

    锂离子电池已经成为现代生活中不可或缺的能源部件,无论是手机、笔记本电脑,还是电动汽车,都依赖它来提供电力。这种电池通过锂离子在正极和负极之间的移动来储存和释放能量,由于工作原理可靠且安全性较高,得到
    的头像 发表于 09-23 18:03 2423次阅读
    <b class='flag-5'>锂离子电池</b>是如何工作的?了解它的内部结构和制造过程

    一文读懂:锂离子电池的基本结构与应用

    锂离子电池作为新一代电化学储能技术的核心载体,凭借高能量密度、长循环寿命及环境友好性等特征,已成为支撑消费电子、新能源汽车及可再生能源储能等领域发展的关键器件。深入理解其结构与应用场景对把握能源技术
    的头像 发表于 08-21 18:04 1510次阅读
    一文读懂:<b class='flag-5'>锂离子电池</b>的基本结构与应用

    锂离子电池的原理与材料全解析

    锂离子电池作为现代储能领域的核心技术,其高效稳定的能量转换能力支撑着新能源产业的快速发展。美能锂电作为行业创新企业,长期致力于锂离子电池材料研发与工艺优化,其技术突破为动力电池领域的革新提供了重要
    的头像 发表于 08-14 18:02 2452次阅读
    <b class='flag-5'>锂离子电池</b>的原理与材料全解析

    锂离子电池组装:绕线与极耳焊接工艺揭秘

    锂离子电池作为核心储能部件,其制造工艺的每一次精进都推动着电动汽车、储能系统等领域的技术革新。锂离子电池组装过程中的绕线和极耳焊接工艺不仅直接影响电池的能量密度、循环寿命和安全性,更是衡量电池
    的头像 发表于 08-11 14:53 2945次阅读
    <b class='flag-5'>锂离子电池</b>组装:绕线与极耳焊接工艺揭秘

    锂离子电池隔膜质量检测与缺陷分析

    全球对可再生能源需求增长,锂离子电池作为关键能源存储技术,其性能和安全性至关重要。隔膜是锂离子电池的核心,其质量影响电池性能。在电池的生产、运输和使用中,隔膜可能出现破膜、刮伤、漏涂、
    的头像 发表于 08-05 17:55 848次阅读
    <b class='flag-5'>锂离子电池</b>隔膜质量检测与缺陷分析

    锂离子电池涂布工艺:技术要求与方法选择

    锂离子电池涂布工艺的特殊要求,包括涂布层数、涂层厚度、浆料黏度、涂布精度、片幅情况、涂布速度等多个方面,以及如何根据这些要求选择合适的涂布方法。通过对涂布工艺的全面
    的头像 发表于 08-05 17:55 788次阅读
    <b class='flag-5'>锂离子电池</b>涂布工艺:技术要求与<b class='flag-5'>方法</b>选择

    干法电极技术:引领锂离子电池绿色革命

    全球能源转型中,锂离子电池作为清洁储能的主力,其生产过程的环保性变得尤为重要。干法电极加工技术,作为一种新兴的无溶剂电极制造方法,正在成为锂离子电池行业的绿色转型的关键。美能光子湾,作为精密测试设备
    的头像 发表于 08-05 17:54 1200次阅读
    干法电极技术:引领<b class='flag-5'>锂离子电池</b>绿色革命

    锂离子电池焊接工艺的分析解构

    作为现代社会的“能源心脏”锂离子电池的应用涉及相当广泛。锂离子电池的的制作工艺之中,焊接技术是连接其内部组件、确保电池高效运作的的重要环节,直接决定了电池安全性、
    的头像 发表于 08-05 17:49 1744次阅读
    <b class='flag-5'>锂离子电池</b>焊接工艺的分析解构

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤
    的头像 发表于 08-05 17:49 1929次阅读
    <b class='flag-5'>锂离子电池</b>电解液浸润机制解析:从孔隙截留到工艺优化

    超级电容器与锂离子电池的区别在哪里?

    本文主要讨论了超级电容器和锂离子电池在储能方面的差异。超级电容器的体积小、容量大,但能量密度低;而锂离子电池体积大、容量小,但能量密度高。超级电容器的功率密度高,反应速度快,寿命长,但需要适应性更强的环境;而锂离子电池在低温下性
    的头像 发表于 07-15 09:32 2020次阅读
    超级电容器与<b class='flag-5'>锂离子电池</b>的区别在哪里?

    车用锂离子电池机理建模与并联模组不一致性研究

    车用锂离子电池机理建模与并联模组不一致性研究
    发表于 05-16 21:02

    锂离子电池自动检测化成分容柜:赋能电池制造的智能利器

    锂离子电池的生产制造过程中,性能检测与化成分容是确保电池品质的关键环节。随着科技的进步和自动化水平的提高,锂离子电池自动检测化成分容柜应运
    的头像 发表于 03-26 11:10 1030次阅读

    FIB-SEM技术在锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究。锂离子电池通常由正极、负极、电解质、隔膜和封装材料等部分构成。正极材料和负极材
    的头像 发表于 02-08 12:15 1065次阅读
    FIB-SEM技术在<b class='flag-5'>锂离子电池</b>的应用

    锂离子电池和三元锂电池,谁更安全?

    锂离子电池和三元锂电池在安全性上各有优劣。锂离子电池凭借其成熟的技术和稳定的性能,在安全性方面有着坚实的保障;三元锂电池虽然在能量密度上表现突出,但在安全性上仍需不断改进和完善。随着科
    的头像 发表于 01-23 15:19 1394次阅读
    <b class='flag-5'>锂离子电池</b>和三元锂<b class='flag-5'>电池</b>,谁更安全?