0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

激光雷达如何加速赋能城市NOA功能落地?

禾赛科技 来源:禾赛科技 2023-11-09 10:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

2023 年 11 月 4 号,“激光雷达助力城市 NOA 驶入量产快车道”技术分享会在禾赛麦克斯韦智造中心举办。禾赛战略负责人施叶舟、轻舟智航产品负责人许诺,与行业媒体专家、先锋用户等,一起就激光雷达如何加速赋能城市 NOA 功能落地进行了深入交流。

激光雷达:

车企竞逐城市 NOA 的

“秘密武器”

激光雷达成为车企落地高阶智驾功能的必选项

据近期媒体报道,热门车型的高阶智驾版选装率已经突破了 60% 的占比,消费者对智能驾驶功能的认可和热情持续高涨。主机厂方面,国内率先落地城市 NOA 的智能车型均搭载了激光雷达;海外布局 L3 智驾功能的头部车企也都配备了激光雷达。

率先在美国获得 L3 级智能驾驶运营许可的梅赛德斯-奔驰官方表示:奔驰的 DRIVE PILOT 搭载包含激光雷达在内的多个传感器,足够的安全冗余对实现安全可靠的 L3 级别智能驾驶是必不可少的。其 2024 年款 S 级和 EQS 轿车车型将会搭载此智驾系统。

本质上,是激光雷达具有「抗干扰」「真三维」「高置信度」的优势,能为算法预测和规控提供高质量的感知输入。

激光雷达既是智能汽车的「隐形安全气囊」,更是加速算法开发落地的「秘密武器」。

MIT:激光雷达夜间融合感知精度是摄像头的 3 倍

工作原理上,激光雷达能主动发射人眼安全的不可见光,可以“自己照亮道路”,不依赖外界环境光,在视线较差的夜晚,也能清晰地还原行车环境,稳定地为算法提供感知数据。

在一项 MIT 的研究论文中,作者对比基于摄像头数据的算法和融合了激光雷达数据的算法结果发现:摄像头算法到了夜晚感知精度有明显的下降,而通过融合激光雷达,可以将夜晚环境的感知精度提升至 3 倍。这项研究结果非常直接地展现了激光雷达对夜晚感知的重要性,能进一步提升夜晚行车的安全。

同样,在「大光比」「对向强光」等其他摄像头感知相对较差的场景下,激光雷达仍然能凭借接收自身发出的红外光,进行稳定的感知输出。

感知更精准,直击 AEB 误触发行业痛点

AEB 功能的推出,是为了帮助车辆减少碰撞,让行车更加安全。但实际使用过程中,受限于感知精准度,会出现 AEB 误触发事件,即在不该刹车的时候刹车,轻的会使得乘坐体验下降,严重的甚至会导致后车追尾、车内人员受伤。

出现误触发的主要原因是车辆感知精度不足,导致决策失误,比如在遇到减速带、车库转弯、隔离带、路边桩桶,如果对距离、尺寸的感知精度不高,会误以为这些物体阻碍了车辆行驶,威胁到行驶安全,从而触发 AEB。但通过激光雷达的厘米级精度,车辆能做出更加准确的判断,诸如:减速带非常低矮可以通过,隔离带不在行车路径上……

从实际效果看,融合了激光雷达的理想 L9 AEB 误触发率已经低至 0.31 次/10 万公里,远低于行业水平 1 次/10 万公里,把误触发率降低了 70%。

极大降低“算法+算力+数据”等隐性成本

施叶舟指出,特斯拉坚持视觉算法路线,背后隐含的是数据驱动的逻辑。与这套方案相匹配的是特斯拉通过数百万辆车源源不断采集的数据,官方统计,截止 2023 年 10 月,Autopilot 累计行驶里程超 90 亿英里,FSD beta 累计行驶里程超 5 亿英里。

而为了处理这些海量数据,特斯拉储备了 14000 块总价值数十亿的 AI 芯片,可同时处理 1600 亿帧图像。与此同时,特斯拉从 2014 年开始自研芯片,21 年发布了 7 nm AI 训练芯片以更好地适配算法模型。

“算法+算力+数据”,构成了后来者难以追赶的竞争壁垒。

从全局看,不光要关注看得见的显性成本,更要关注看不见的隐性成本。拿掉激光雷达看似节省了一些硬件成本,但车端感知能力的下降,需要在云端投入更多的资源进行开发,极大抬高了隐性成本,在车辆销量没有非常高的情况下,这些隐性成本均摊下来实际上远高于硬件成本。

激光雷达的加入, 让感知精度领先视觉算法 3 年以上

Nuscenes 是全世界影响力最大的开源数据集之一,各大顶尖算法在该数据集上进行测试打分。统计发现,视觉算法 2023 年所达到的平均感知精度仍然不及融合激光雷达算法在 3 年前的水平。5

c05fb388-7ea3-11ee-939d-92fbcf53809c.png

与此同时,激光雷达融合算法也在快速迭代升级,多传感器数据的融合方法从基于目标识别结果的「后融合」,到特征级的「中融合」,再向着更加底层的「前融合」发展,平均感知精度在近两年呈现出了加速提升的趋势。

无论是语义识别还是占用网络,

有限的数据训练不能覆盖所有通用障碍物

首先传统的基于“语义识别”的视觉算法,由于需要预先设定物体种类“白名单”,这样的白名单往往只能涵盖高频出现的道路元素和障碍物,例如:机动车、自行车、行人、小孩、水马、红绿灯等,最多几十种类型。按照语义识别的规则,只有白名单以内的物体,才会被准确地标上“标签”,其余不认识的物体都不能被“框住”,也就是会被算法「漏识别」。

例如 2021 年 FSD 推出之后,2022 年 11 月公开测试6中,特斯拉面对摆在路上的“黑色小狗”模型,仍然径直开过去,没有刹车。原因在于,视觉算法模型对于道路出现黑色小狗这样的场景训练还不足够,而类似这样的场景难以通过数据训练全部覆盖,总会有没见过的“例外”。

视觉占用网络的推出仍然不能完全解决以上难题。在一项研究占用网络的论文7中,算法在对道路进行网格处理时,不常见的“黑色消防栓”就没有被检测为障碍物。究其原因是因为占用网络同样依赖数据训练。为了覆盖更多障碍物的识别,必然伴随着数据采集标注量的增大,对于算法的训练成本投入会持续增加,但是带来的边际效应会越来越小。

相比之下,激光雷达则直接得多,不用训练,有无障碍物可以直接基于空间点云的有无进行判断。

厘米级感知低矮物体,高效追踪近距离物体

低矮物体的准确判断也是视觉算法的难点,考虑到低矮物体往往只有十几厘米或更矮,视觉算法的精度不足以准确测量,因此在没有明显的语义特征时,低矮物体“是否识别到”“有多高”“能不能通过”,成为了影响行车体验乃至安全的不可控因素。

而激光雷达对高度的测量精度稳定在「几厘米」水准8,即使是低矮物体,也不会出现遗漏。

c0893884-7ea3-11ee-939d-92fbcf53809c.png

视觉算法的另一难点是,对于近距离物体的速度监测,需要结合多帧图像以及海量的算法过程,这样的复杂运算大大增加了延时,从而降低了及时性,因此单纯靠视觉算法,应对「近距离加塞」「拥堵跟车」显得力不从心,更别提各种突然窜出来的电动车了。

相比而言,激光雷达凭借三维位置信息,通过简单高效的几何运算就能获取速度,就显得游刃有余的多。从轻舟智航的实测视频来看,融合激光雷达的感知算法很好地应对了各类近距离极限场景。

c0c5bbe2-7ea3-11ee-939d-92fbcf53809c.png

最后,施叶舟指出,加速城市 NOA 功能量产意味着建立先发优势,而激光雷达正是加速智驾算法开发的利器。谁能将感知算法做到好用,将城市 NOA 功能尽快量产,谁才能尽早获得消费者的认可,在智驾的“战场”上领先一个身位。

城市 NOA 规模化落地,

迎来“ iPhone 时刻”

——by 轻舟智航产品负责人许诺

轻舟智航多款标杆产品搭载激光雷达

许诺首先分享了轻舟智航在 L4 自动驾驶、L2+ 高阶辅助驾驶量产等多款标杆产品中使用了激光雷达,包括在无人驾驶小巴等“龙舟”系列产品上标配了多个「360° 旋转式图像级激光雷达 Pandar128」,在高阶辅助驾驶解决方案“轻舟”系列 MAX 产品上配置了「超高清远距激光雷达 AT128」。

在谈到激光雷达的作用时,许诺直言,现阶段单纯依靠视觉方案,很难应对中国城市道路中的各类 Corner Case。

“激光雷达,是以投入换时间,加速城市 NOA 落地的捷径。” 许诺这样概括。

具体表现为四点:

擅长处理城市复杂场景

当高阶辅助驾驶在开放多样的城区场景落地过程中,会不断地遇到从未见过的棘手问题,如何灵活地与近距离车辆博弈,如何在夜间摄像头视线不佳时稳定行驶,如何在没有车道线的停车楼穿行。轻舟认为,激光雷达对环境的精准感知,能够帮助车辆更好地应对城市的复杂场景。

许诺还在 Q&A 时提到:

不同的传感器是一定会带来不同的系统差别。举例来看,如果是视觉感知,当遇到眩光或者当有物体遮挡住传感器就会降低感知能力,但增加一颗其他的传感器,比如说激光雷达,就会增加一份安全冗余。

以 AEB 为例,如果车辆配备激光雷达,作为算法公司一定会去使用激光雷达,因为已经有了这样一个很好的硬件配置在里面,如果不用,那相当于浪费了。

稳定识别通用障碍物

轻舟具备行业领先的通用障碍物识别能力,融合了激光雷达数据,算法可以在不检测物体类别的情况下对物体进行检出,保证行车安全。

而如果 OmniNet 感知大模型,将多传感器时序穿插融合,通过在重点区域激光雷达与图像的结合将提升感知精度,采用 120° 激光雷达对前向进行了 3D 感知覆盖,帮助算法解决难处理的低速和静态物体,从而用一颗激光雷达方案实现了非常好的城市 NOA 体验。

采用视觉算法,许诺提到:“即便是随着数据量越来越多,能处理更多的长尾场景,但是要把长尾场景全部处理完,实际上是一个非常困难的一个事情。”

轻舟展现了行业领先的 OmniNet 感知大模型,将多传感器时序穿插融合,通过在重点区域激光雷达与图像的结合将提升感知精度,采用 120° 激光雷达对前向进行了 3D 感知覆盖,帮助算法解决难处理的低速和静态物体,从而用一颗激光雷达方案实现了非常好的城市 NOA 体验。

c0f0f500-7ea3-11ee-939d-92fbcf53809c.png

加速算法迭代, 提供精准真值数据,高效挖掘长尾数据

作为高精度的传感器,激光雷达数据可以在点云大模型的解析下进行自动化标注,为算法提供真值,加速算法进化迭代。

c128dbd2-7ea3-11ee-939d-92fbcf53809c.png

许诺在分享时举了两个例子:一个是在夜晚道路上,视觉算法漏检了一辆隔离带对面的车辆,而通过点云标注正确识别了这辆车;另外一个是视觉算法误检了一辆两轮车为三轮车,而通过点云标注同样纠正了这个问题。

c151bf8e-7ea3-11ee-939d-92fbcf53809c.png

最后,激光雷达对物体的识别不依赖预设的语义信息,举例来说,下图中躺在路边的行人,如果没有激光雷达作为感知补充,可能很难识别到。

c1744d60-7ea3-11ee-939d-92fbcf53809c.png

因此,利用激光雷达数据可以更好地挖掘长尾场景,高效地实现数据积累,进一步加速算法的进化,更早实现量产落地。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2574

    文章

    54422

    浏览量

    786280
  • 智能驾驶
    +关注

    关注

    5

    文章

    2951

    浏览量

    50971
  • 激光雷达
    +关注

    关注

    978

    文章

    4382

    浏览量

    195413

原文标题:激光雷达如何加速城市 NOA 落地?我们这次展开聊聊

文章出处:【微信号:hesaitech_sh,微信公众号:禾赛科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    CES 2025激光雷达观察:“千线”激光雷达亮相,头部厂商布局具身智能

    电子发烧友网报道(文/梁浩斌)每年CES都是激光雷达厂商发布新品的节点,在今年CES 2025上,有超过30家激光雷达厂商参展。头部的厂商,禾赛、速腾聚创、Seyond都推出了新产品,另外国内多家
    的头像 发表于 01-12 09:08 3362次阅读
    CES 2025<b class='flag-5'>激光雷达</b>观察:“千线”<b class='flag-5'>激光雷达</b>亮相,头部厂商布局具身智能

    【SOA是什么?】#激光雷达

    激光雷达
    天津见合八方光电科技有限公司
    发布于 :2025年07月15日 14:39:59

    禾赛科技ATX激光雷达荣获ISO 26262 ASIL B功能安全产品认证

    近日,全球领先的激光雷达研发与制造企业禾赛科技(纳斯达克:HSAI)旗下产品——车规级小巧型超高清远距激光雷达 ATX,正式通过了国际权威检测认证机构 SGS-TÜV 颁发的 ISO 26262 ASIL B 功能安全产品认证,
    的头像 发表于 06-24 18:12 977次阅读

    FMCW激光雷达加速落地工业场景

    电子发烧友网综合报道 FMCW激光雷达虽然在车载领域还未实现量产应用,但实际上在工业等领域,比如单点测距场景中已经实现落地。近期激光雷达厂商摩尔芯光正式发布全球首款FMCW球形激光雷达
    的头像 发表于 06-17 00:21 3853次阅读

    SPAD席卷车载激光雷达市场

    电子发烧友网报道(文/梁浩斌)上周我们报道了一款新推出的激光雷达ASIC方案,值得关注的是该方案中与ASIC搭配的传感器均选择了SiPM。当然从成本的角度来看,作为第三方的激光雷达ASIC方案
    的头像 发表于 06-13 00:59 4928次阅读

    第三方激光雷达ASIC方案,改变行业格局吗?

    进行系统设计。   而近年随着激光雷达市场的爆发式增长,激光雷达降本的节奏加速,我们也看到激光雷达有自研芯片的趋势,包括接收端的SPAD和处理端的SoC或ASIC,逐渐放弃了FPGA。
    的头像 发表于 06-07 01:11 7784次阅读
    第三方<b class='flag-5'>激光雷达</b>ASIC方案,<b class='flag-5'>能</b>改变行业格局吗?

    为什么城市NOA离不开激光雷达

    自己的城市NOA方案后,可以发现一个很明显的趋势,那便是城市NOA似乎都需要激光雷达进行辅助,虽然曾一直高呼“纯感知”的技术路线,但也不得不
    的头像 发表于 05-28 09:13 699次阅读
    为什么<b class='flag-5'>城市</b><b class='flag-5'>NOA</b>离不开<b class='flag-5'>激光雷达</b>?

    激光雷达(LiDAR)技术方案与工作原理全解析

    在自动驾驶、智慧城市、机器人导航等众多前沿科技领域,激光雷达(LiDAR,Light Detection and Ranging)正扮演着愈发关键的角色。它凭借高精度、高分辨率的探测能力,为各类智能
    的头像 发表于 04-25 16:09 1847次阅读
    <b class='flag-5'>激光雷达</b>(LiDAR)技术方案与工作原理全解析

    镭神智能激光雷达飞行汽车/eVTOL避障系统解决方案—开启低空安全飞行新未来

    障行业应用解决方案,以精准感知、快速响应和超远测距为核心优势,为飞行汽车的安全航行保驾护航。核心技术:激光雷达三维感知,精准预判风险镭神智能激光雷达系统通过高
    的头像 发表于 04-11 20:02 1097次阅读
    镭神智能<b class='flag-5'>激光雷达</b>飞行汽车/eVTOL避障系统解决方案—开启低空安全飞行新未来

    锐驰智光激光雷达移动式太阳发电舱

    在全球化清洁能源转型浪潮中,中国创新技术正成为海外市场的重要驱动力。锐驰智光自主研发的激光雷达凭借其高精度环境感知能力,成功英国Boss Cabins公司旗舰产品Deep Green 2030
    的头像 发表于 03-19 11:15 887次阅读

    激光雷达技术:自动驾驶的应用与发展趋势

    随着近些年科技不断地创新,自动驾驶技术正逐渐从概念走向现实,成为汽车行业的重要发展方向。在众多传感器技术中,激光雷达(LiDAR)因其独特的优势,被认为是实现高级自动驾驶功能的关键。激光雷达技术
    的头像 发表于 03-10 10:16 1426次阅读
    <b class='flag-5'>激光雷达</b>技术:自动驾驶的应用与发展趋势

    DeepSeek:2025年激光雷达技术与行业应用趋势

    智能化,加速突破瓶颈1.固态化与芯片化主导技术迭代固态激光雷达(Solid-StateLiDAR):2025年,机械旋转式激光雷达将逐步退出主流市场,固态方案(如
    的头像 发表于 02-06 10:40 2885次阅读
    DeepSeek:2025年<b class='flag-5'>激光雷达</b>技术与行业应用趋势

    激光雷达领域的新秀利器—SPAD23

    分析在激光雷达系统中的关键应用以及在激光雷达系统中核心器件的技术特性
    的头像 发表于 01-23 14:35 1229次阅读
    <b class='flag-5'>激光雷达</b>领域的新秀利器—SPAD23

    一则消息引爆激光雷达行业!特斯拉竟然在自研激光雷达

    电子发烧友网报道(文/梁浩斌)一则消息引爆激光雷达行业?上周业界流传的一份会议纪要称,有自动驾驶专家透露,特斯拉已经设计了自己的激光雷达,并正在与大陆集团合作,将自己开发的激光雷达技术集成到汽车系统
    的头像 发表于 12-30 00:09 2931次阅读

    激光雷达,明年要降价至200美元

      电子发烧友网报道(文/梁浩斌)激光雷达降本的速度,在进入大规模量产之后开始不断加速。从2021年激光雷达刚刚大规模上车,单个激光雷达1000美元;到2023年,
    的头像 发表于 12-16 11:36 6081次阅读
    <b class='flag-5'>激光雷达</b>,明年要降价至200美元