0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于周期折射率调制的高分辨率紧凑型全光纤光谱仪

QQ287392669 来源:光纤传感Focus 2023-09-08 12:42 次阅读

01导读

光谱分析技术在材料分析、环境监测、农业、生物医疗、空间探测等领域有重要应用。传统高分辨率光谱仪体积大、重量大、工作环境要求高,使其难以满足光谱分析检测现场化、快速化的发展要求。如何兼顾光谱仪微型化与高性能已成为国内外的研究热点。尽管散斑检测全光纤光谱仪在高分辨率方面显示出巨大潜力,但多模光纤(MMF)长度过长成为小型化设计的一大阻碍。

哈尔滨工程大学关春颖教授团队通过探究光纤内模式激发机理,设计了独特的无芯光纤(CLF)和光子晶体光纤(PCF)级联结构,提出一种基于周期性折射率调制的高分辨率紧凑型全光纤散斑光谱仪。仅用一根10 cm长的PCF和CLF拼接结构,实现了20 nm带宽内0.03 nm的分辨率。该研究成果以“A high resolution compact all-fiber spectrometer based on periodic refractive index modulation”为题发表在Applied Physics Letters哈尔滨工程大学硕士研究生陈宏洲为论文的第一作者,关春颖教授为论文的通讯作者。

817a6824-4dfd-11ee-a25d-92fbcf53809c.jpg

封面图:全光纤散斑光谱仪系统图

02研究背景

近年来,得益于光学散射技术的发展和光谱重构理论的建立,基于散斑检测的光谱仪得以面世。这类光谱仪利用微小的光学散射元件代替传统光谱仪中的色散元件,通过建立散斑与入射光波长的映射关系实现光谱分析。磨砂玻璃、积分球、纳米颗粒、金属微米孔阵列、波导和光纤等均可用作散射元件。多模光纤作为散射元件的散斑光谱仪具备结构简单、易于复用、抗电磁干扰等优点,通过增加光纤长度能获得高分辨率,已有相关文献报道使用100 m长多模光纤获得1 pm的光谱分辨率,但长光纤不易固定,难以实现小型化,而且更容易受到振动和其它外部干扰的影响。

03创新研究

3.1 模式激发原理

在多模光纤中,导模之间的干涉可以形成波长相关的散斑图。对于单色输入光,长度为L的光纤末端的电场可以写成每个导模的叠加之和:

818bbbba-4dfd-11ee-a25d-92fbcf53809c.jpg

其中,Am和φm是第m个模式的振幅和初始相位,它具有空间轮廓Ψm和传播常数βm。散斑图特性取决于相位偏差∆φ(λ)=βl(λ)L-βm(λ)L(l≠m),不同的输入波长λ会引起传播常数的改变,导致引导模式在沿光纤传播时积累不同的相位延迟βm(λ)L,造成散斑图案的改变,从而建立起输入波长与散斑图案的对应关系。光纤光谱仪的光谱相关宽度表示为δλ~(λ/n)2/(2nL)/[1-cos(NA)],δλ与光纤长度L和数值孔径NA成反比。无芯光纤的NA相比于普通多模光纤有很大提升,这有助于缩短光纤长度且同时保持较高的光谱分辨率。理论上无芯光纤在波长1550 nm支持约34000个模式,但从得到的散斑图案来看这些模式并未完全被激发。因此,采用无芯光纤和光子晶体光纤周期性级联来扰乱模式传输,以达到充分激发高阶模式的目的来提高光谱分辨率。

全光纤散斑光谱仪系统如图1(a)所示。为了兼顾全光纤式光谱仪的微型化与高性能,设计了总长度为10 cm的无芯光纤(CL 0/125-0/250,在1550 nm处折射率为1.444)和全固态带隙型光子晶体光纤级联结构。图1(b)和1(c)为光子晶体光纤截面图和无芯光纤与光子晶体光纤级联结构图。

81a4fab2-4dfd-11ee-a25d-92fbcf53809c.jpg

图1 (a) 全光纤散斑光谱仪系统图;(b) PCF截面图;(c) CLF和PCF级联结构图

3.2光谱相关性

图2(a)和图2(b)分别显示了未拼接的CLF和20段PCF拼接的CLF散斑图,拼接PCF的CLF产生了更加复杂的散斑图。仿真计算级联结构出射光场如图2(c)所示,计算的散斑图也验证了拼接PCF对散斑图有显著影响。如图2(d)为拼接不同段数的光谱相关函数。

随着拼接段数增加,散斑图随着波长变化而改变得更快。对于20段PCF拼接的CLF来说,光谱相关宽度δλ为0.03 nm,表明0.03 nm的波长偏移会使散斑图相关度降低到0.5。这一性能与利用2 m长多模光纤相当。图2(e)显示δλ随着拼接段数增加而变窄。PCF的引入相当于周期性地调制CLF的折射率分布,扰乱了CLF的模式传输,有效地激发了更多的高阶模式。

81c7af44-4dfd-11ee-a25d-92fbcf53809c.jpg

图2 (a) CLF在1550.00 nm时的散斑图;(b) 拼接20段PCF的CLF在不同波长时的散斑图;(c)仿真散斑图;(d) 拼接5、10、15、20段PCF的CLF (ii-v)的光谱相关函数C(Δλ);(e) 拼接段数对光谱相关宽度δλ的影响

3.3 光谱重构

图3(a)显示了在1540-1560 nm范围内的重构光谱,它准确地恢复了每条谱线的位置,平均信噪比超过了25 dB。如图3(b)所示,重构光谱(蓝色圆点)清楚地分辨出两条输入光谱线(红色虚线),它们之间相隔0.03 nm,这与光谱相关函数的估计值一致。

81fcd3b8-4dfd-11ee-a25d-92fbcf53809c.jpg

图3(a)窄线宽光谱的重构光谱;(b) 相隔0.03 nm的两条谱线的重构光谱,蓝色表示校准后的波长,红色表示输入光谱线的中心波长

对于一个连续的宽带光谱,不同波长会产生不同的散斑图,其强度叠加会导致散斑对比度下降。通过在离散余弦变换域施加稀疏性约束,可以很好地重构连续的带宽光谱。图4(a)显示了在1540-1560 nm波长范围内重构的光谱,光谱重构误差µ为0.04。图4(b)显示了µ与信噪比的函数关系,µ随信噪比的增加而下降,然后趋于饱和。

基于CLF的光谱仪在信噪比小于20 dB时提供了更好的重构性能,因为此时的散斑图案可以容纳更多的模式信息。为了验证全光纤光谱仪在校准误差下的适用性,重构了超连续光源经过滤波后产生的光谱,如图4(c)所示,重构光谱与传统的光谱分析仪(OSA)测得的光谱相匹配,光谱重构误差约为0.06。

821abe64-4dfd-11ee-a25d-92fbcf53809c.jpg

图4 (a) 随机产生的连续信号(红色)的重构频谱(蓝色);(b) 重构误差μ关于信噪比的函数;(c) 重构的光谱(蓝色)和OSA的测量结果(红色)

04应用与展望

本文展示了CLF和PCF级联结构的紧凑型全光纤散斑光谱仪,它在小型化和高性能方面显示出巨大潜力。光谱分辨率随拼接段数增加而提高。光纤总长度只有10 cm,光谱仪在20 nm的带宽内可以获得0.03 nm的光谱分辨率。与基于相同长度的多模光纤光谱仪相比,分辨率提高了约20倍。所设计的系统厘米级尺寸与基于几十米多模光纤的装置相比,在小型化方面有了很大的改进。基于CLF的紧凑型光谱仪有望在便携式应用中实现皮米级的光谱分辨率,为微型光谱仪系统提供一个新的途径。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 信噪比
    +关注

    关注

    3

    文章

    233

    浏览量

    28328
  • 光谱分析仪
    +关注

    关注

    2

    文章

    89

    浏览量

    13779
  • PCF
    PCF
    +关注

    关注

    0

    文章

    30

    浏览量

    20798
  • 多模光纤
    +关注

    关注

    1

    文章

    150

    浏览量

    11520
  • CLF
    CLF
    +关注

    关注

    0

    文章

    2

    浏览量

    6732

原文标题:Applied Physics Letters:基于周期折射率调制的高分辨率紧凑型全光纤光谱仪

文章出处:【微信号:光纤传感Focus,微信公众号:光纤传感Focus】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    高管洞察:高分辨率音乐需要高分辨率扬声器

    所有关于高分辨率音乐传输和无损音频或空间音频格式的讨论都为时过早。很少有人能分辨出其中的区别——除非他们通过高分辨率、固态扬声器聆听。 作者: MIKE HOUSHOLDER,xMEMS 营销和业务
    发表于 03-21 14:57 115次阅读
    高管洞察:<b class='flag-5'>高分辨率</b>音乐需要<b class='flag-5'>高分辨率</b>扬声器

    stm32G4 H7系列的HRTIM高分辨率定时器可以做捕获输入吗?

    stm32G4,H7系列的HRTIM高分辨率定时器可以做捕获输入吗,如果可以输入引脚在哪。想测量外部脉冲频率600-800KHz,误差尽量小(±10Hz) 有什么方案给推荐一下。谢谢!!
    发表于 03-15 07:33

    紧凑型矢量光场生成系统

    制造、表面等离子体激发、光学微操作、光学成像等应用领域。技术特征:采用4K高分辨率SLM矢量光场单自由度调制综合调制所有的4个自由度,也可以选择调制其中的2~3个自由度 铝合金箱体,
    发表于 02-28 13:20

    EVAL_PASCO2_SENSOR为什么无法从较低的分辨率高速获得更高的分辨率

    我有一个图像 EVAL_PASCO2_SENSOR,支持高达 3840x2160 分辨率的超高速和高速。 我能以超快的速度拍摄所有静止画面。 但是,当我尝试获得更高分辨率(3840x2160)的静态
    发表于 02-22 07:58

    如何使用SPU实现MUSIC或ESPRIT算法以获得超高分辨率

    如何使用SPU实现MUSIC或ESPRIT算法以获得超高分辨率? 谢谢。
    发表于 01-23 07:59

    如何提高硬件pwm的分辨率

    如题,新唐的pwm一般都是16bit, 其实也可以利用预分频比来提高一些所谓的分辨率. 现在有这样一个需求. 要求脉宽在0-65535us之间连续可调, 周期,也类似.但是肯定要大于65535,连续
    发表于 01-16 08:30

    adis16136陀螺分辨率是多少?

    我想知道adis16136陀螺分辨率是多少
    发表于 12-29 07:19

    详述ADC精度和分辨率的差异

    个数值。对于一个理想ADC来说,传递函数是一个步宽等于分辨率的阶梯。然而,在具有较高分辨率的系统中(≥16位),传输函数的响应将相对于理想响应有一个较大的偏离。这是因为ADC以及驱动器电路导致的噪声会
    发表于 12-20 06:55

    峰峰值分辨率与有效分辨率的区别

    低带宽、高分辨率ADC的分辨率为16位或24位。但是,器件的有效位数受噪声限制,而噪声则取决于输出字速率和所用的增益设置。有些公司规定使用有效分辨率来表示该参数,ADI则规定使用峰峰值分辨率
    发表于 12-15 07:56

    怎么调整andriod输出分辨率,适配分辨率大的屏?

    求教,怎么调整andriod输出分辨率,适配分辨率大的屏
    发表于 11-06 07:13

    高分辨力微型光谱仪的光学系统设计

    高分辨率光谱仪设计
    发表于 10-20 09:05 0次下载

    DIY低成本高分辨率的微信热像仪

    便于DIY的低成本方案,分辨率甚至更高!观看视频:https://www.icxbk.com/video/detail/1176.html
    发表于 09-26 07:20

    stm32G4 H7系列的HRTIM高分辨率定时器可以做捕获输入吗?

    stm32G4,H7系列的HRTIM高分辨率定时器可以做捕获输入吗,如果可以输入引脚在哪。想测量外部脉冲频率600-800KHz,误差尽量小(±10Hz) 有什么方案给推荐一下。谢谢!!
    发表于 08-05 06:41

    低端单片机如何驱动高分辨率彩屏

    低端单片机如何驱动高分辨率彩色液晶屏
    的头像 发表于 06-25 15:23 1513次阅读
    低端单片机如何驱动<b class='flag-5'>高分辨率</b>彩屏