0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于周期折射率调制的高分辨率紧凑型全光纤光谱仪

QQ287392669 来源:光纤传感Focus 2023-09-08 12:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01导读

光谱分析技术在材料分析、环境监测、农业、生物医疗、空间探测等领域有重要应用。传统高分辨率光谱仪体积大、重量大、工作环境要求高,使其难以满足光谱分析检测现场化、快速化的发展要求。如何兼顾光谱仪微型化与高性能已成为国内外的研究热点。尽管散斑检测全光纤光谱仪在高分辨率方面显示出巨大潜力,但多模光纤(MMF)长度过长成为小型化设计的一大阻碍。

哈尔滨工程大学关春颖教授团队通过探究光纤内模式激发机理,设计了独特的无芯光纤(CLF)和光子晶体光纤(PCF)级联结构,提出一种基于周期性折射率调制的高分辨率紧凑型全光纤散斑光谱仪。仅用一根10 cm长的PCF和CLF拼接结构,实现了20 nm带宽内0.03 nm的分辨率。该研究成果以“A high resolution compact all-fiber spectrometer based on periodic refractive index modulation”为题发表在Applied Physics Letters哈尔滨工程大学硕士研究生陈宏洲为论文的第一作者,关春颖教授为论文的通讯作者。

817a6824-4dfd-11ee-a25d-92fbcf53809c.jpg

封面图:全光纤散斑光谱仪系统图

02研究背景

近年来,得益于光学散射技术的发展和光谱重构理论的建立,基于散斑检测的光谱仪得以面世。这类光谱仪利用微小的光学散射元件代替传统光谱仪中的色散元件,通过建立散斑与入射光波长的映射关系实现光谱分析。磨砂玻璃、积分球、纳米颗粒、金属微米孔阵列、波导和光纤等均可用作散射元件。多模光纤作为散射元件的散斑光谱仪具备结构简单、易于复用、抗电磁干扰等优点,通过增加光纤长度能获得高分辨率,已有相关文献报道使用100 m长多模光纤获得1 pm的光谱分辨率,但长光纤不易固定,难以实现小型化,而且更容易受到振动和其它外部干扰的影响。

03创新研究

3.1 模式激发原理

在多模光纤中,导模之间的干涉可以形成波长相关的散斑图。对于单色输入光,长度为L的光纤末端的电场可以写成每个导模的叠加之和:

818bbbba-4dfd-11ee-a25d-92fbcf53809c.jpg

其中,Am和φm是第m个模式的振幅和初始相位,它具有空间轮廓Ψm和传播常数βm。散斑图特性取决于相位偏差∆φ(λ)=βl(λ)L-βm(λ)L(l≠m),不同的输入波长λ会引起传播常数的改变,导致引导模式在沿光纤传播时积累不同的相位延迟βm(λ)L,造成散斑图案的改变,从而建立起输入波长与散斑图案的对应关系。光纤光谱仪的光谱相关宽度表示为δλ~(λ/n)2/(2nL)/[1-cos(NA)],δλ与光纤长度L和数值孔径NA成反比。无芯光纤的NA相比于普通多模光纤有很大提升,这有助于缩短光纤长度且同时保持较高的光谱分辨率。理论上无芯光纤在波长1550 nm支持约34000个模式,但从得到的散斑图案来看这些模式并未完全被激发。因此,采用无芯光纤和光子晶体光纤周期性级联来扰乱模式传输,以达到充分激发高阶模式的目的来提高光谱分辨率。

全光纤散斑光谱仪系统如图1(a)所示。为了兼顾全光纤式光谱仪的微型化与高性能,设计了总长度为10 cm的无芯光纤(CL 0/125-0/250,在1550 nm处折射率为1.444)和全固态带隙型光子晶体光纤级联结构。图1(b)和1(c)为光子晶体光纤截面图和无芯光纤与光子晶体光纤级联结构图。

81a4fab2-4dfd-11ee-a25d-92fbcf53809c.jpg

图1 (a) 全光纤散斑光谱仪系统图;(b) PCF截面图;(c) CLF和PCF级联结构图

3.2光谱相关性

图2(a)和图2(b)分别显示了未拼接的CLF和20段PCF拼接的CLF散斑图,拼接PCF的CLF产生了更加复杂的散斑图。仿真计算级联结构出射光场如图2(c)所示,计算的散斑图也验证了拼接PCF对散斑图有显著影响。如图2(d)为拼接不同段数的光谱相关函数。

随着拼接段数增加,散斑图随着波长变化而改变得更快。对于20段PCF拼接的CLF来说,光谱相关宽度δλ为0.03 nm,表明0.03 nm的波长偏移会使散斑图相关度降低到0.5。这一性能与利用2 m长多模光纤相当。图2(e)显示δλ随着拼接段数增加而变窄。PCF的引入相当于周期性地调制CLF的折射率分布,扰乱了CLF的模式传输,有效地激发了更多的高阶模式。

81c7af44-4dfd-11ee-a25d-92fbcf53809c.jpg

图2 (a) CLF在1550.00 nm时的散斑图;(b) 拼接20段PCF的CLF在不同波长时的散斑图;(c)仿真散斑图;(d) 拼接5、10、15、20段PCF的CLF (ii-v)的光谱相关函数C(Δλ);(e) 拼接段数对光谱相关宽度δλ的影响

3.3 光谱重构

图3(a)显示了在1540-1560 nm范围内的重构光谱,它准确地恢复了每条谱线的位置,平均信噪比超过了25 dB。如图3(b)所示,重构光谱(蓝色圆点)清楚地分辨出两条输入光谱线(红色虚线),它们之间相隔0.03 nm,这与光谱相关函数的估计值一致。

81fcd3b8-4dfd-11ee-a25d-92fbcf53809c.jpg

图3(a)窄线宽光谱的重构光谱;(b) 相隔0.03 nm的两条谱线的重构光谱,蓝色表示校准后的波长,红色表示输入光谱线的中心波长

对于一个连续的宽带光谱,不同波长会产生不同的散斑图,其强度叠加会导致散斑对比度下降。通过在离散余弦变换域施加稀疏性约束,可以很好地重构连续的带宽光谱。图4(a)显示了在1540-1560 nm波长范围内重构的光谱,光谱重构误差µ为0.04。图4(b)显示了µ与信噪比的函数关系,µ随信噪比的增加而下降,然后趋于饱和。

基于CLF的光谱仪在信噪比小于20 dB时提供了更好的重构性能,因为此时的散斑图案可以容纳更多的模式信息。为了验证全光纤光谱仪在校准误差下的适用性,重构了超连续光源经过滤波后产生的光谱,如图4(c)所示,重构光谱与传统的光谱分析仪(OSA)测得的光谱相匹配,光谱重构误差约为0.06。

821abe64-4dfd-11ee-a25d-92fbcf53809c.jpg

图4 (a) 随机产生的连续信号(红色)的重构频谱(蓝色);(b) 重构误差μ关于信噪比的函数;(c) 重构的光谱(蓝色)和OSA的测量结果(红色)

04应用与展望

本文展示了CLF和PCF级联结构的紧凑型全光纤散斑光谱仪,它在小型化和高性能方面显示出巨大潜力。光谱分辨率随拼接段数增加而提高。光纤总长度只有10 cm,光谱仪在20 nm的带宽内可以获得0.03 nm的光谱分辨率。与基于相同长度的多模光纤光谱仪相比,分辨率提高了约20倍。所设计的系统厘米级尺寸与基于几十米多模光纤的装置相比,在小型化方面有了很大的改进。基于CLF的紧凑型光谱仪有望在便携式应用中实现皮米级的光谱分辨率,为微型光谱仪系统提供一个新的途径。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 信噪比
    +关注

    关注

    3

    文章

    267

    浏览量

    29473
  • 光谱分析仪
    +关注

    关注

    2

    文章

    113

    浏览量

    14803
  • PCF
    PCF
    +关注

    关注

    0

    文章

    32

    浏览量

    21266
  • 多模光纤
    +关注

    关注

    1

    文章

    196

    浏览量

    12421
  • CLF
    CLF
    +关注

    关注

    0

    文章

    2

    浏览量

    6900

原文标题:Applied Physics Letters:基于周期折射率调制的高分辨率紧凑型全光纤光谱仪

文章出处:【微信号:光纤传感Focus,微信公众号:光纤传感Focus】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    DLP9500:高分辨率空间照明调制的理想之选

    DLP9500:高分辨率空间照明调制的理想之选 在硬件设计的世界里,不断追求高分辨率、高性能的空间照明调制解决方案是我们电子工程师的目标。今天,就来和大家深入探讨一下 DLP9500
    的头像 发表于 12-15 10:30 164次阅读

    深入解析DLP9000XUV DMD:高分辨率UV调制的理想之选

    深入解析DLP9000XUV DMD:高分辨率UV调制的理想之选 在电子工程领域,数字微镜器件(DMD)一直是实现高性能空间光调制的关键技术。今天,我们将深入探讨德州仪器(TI
    的头像 发表于 12-11 14:05 257次阅读

    DLPC8445、DLPC8445V和DLPC8455高分辨率控制器深度解析

    DLPC8445、DLPC8445V和DLPC8455高分辨率控制器深度解析 在当今的显示技术领域,高分辨率、高亮度且小巧外形的显示系统需求日益增长。TI推出的DLPC8445、DLPC8445V
    的头像 发表于 12-10 14:10 126次阅读

    光纤光谱仪分辨率越高越好吗?科普来了

    光纤光谱仪分辨率是否越高越好呢?今天,我们就来深入探讨这个问题。 什么是光纤光谱仪分辨率
    的头像 发表于 09-19 12:03 440次阅读

    光谱椭偏测量:金属/半导体TMDs薄膜光学常数与高折射率特性

    过渡金属二硫族化合物(TMDs)因其独特的激子效应、高折射率和显著的光学各向异性,在纳米光子学领域展现出巨大潜力。本研究采用Flexfilm光谱椭偏结合机械剥离技术,系统测量了多种
    的头像 发表于 07-21 18:17 762次阅读
    <b class='flag-5'>全</b><b class='flag-5'>光谱</b>椭偏<b class='flag-5'>仪</b>测量:金属/半导体TMDs薄膜光学常数与高<b class='flag-5'>折射率</b>特性

    聚徽厂家工业液晶屏的高分辨率成像技术揭秘

    在工业生产、智能控制、精密检测等领域,对信息的精准获取与清晰展示至关重要。聚徽厂家的工业液晶屏凭借卓越的高分辨率成像技术,在众多品牌中脱颖而出,为各行业提供了清晰、细腻的视觉呈现。接下来,将深入探究聚徽工业液晶屏高分辨率成像技术背后的奥秘。
    的头像 发表于 07-11 18:08 630次阅读

    LT8722如何实现高分辨率的脉冲?

    resolution should be 333/2^(24)=0.00002 ns. 如何实现如此高分辨率的脉冲? PWM 是否由模拟比较器产生?芯片中是否有真正的 DAC 来产生比较器电压? What
    发表于 04-28 06:08

    VirtualLab Fusion应用:渐变折射率(GRIN)镜头的建模

    摘要 折射率平滑变化的渐变折射率(GRIN)介质可用于例如:使镜头表面平坦或减少像差。 VirtualLab Fusion为光通过GRIN介质的传播提供了一种物理光学建模技术。在相同的速度下
    发表于 03-18 08:57

    国产高分辨率AFE替换ADS1283/ADS1284应用于高精度仪器

    国产高分辨率AFE替换ADS1283/ADS1284应用于高精度仪器
    的头像 发表于 03-04 10:00 895次阅读
    国产<b class='flag-5'>高分辨率</b>AFE替换ADS1283/ADS1284应用于高精度仪器

    高分辨率示波器的功能与作用:以麦科信MHO6为例

    一、高分辨率示波器的定义与重要性 高分辨率示波器是一种能够以高精度捕捉和分析信号的电子测量仪器,它通过增加垂直分辨率(通常为12bit或更高)和采样,能够更清晰地显示信号的细节,从而
    发表于 02-28 17:39

    高速、高分辨率、大面积成像应用的理想选择——Falcon4-CLHS工业相机

    在机器视觉高性能成像应用领域,TeledyneDalsa的Falcon4-CLHS工业相机系列无疑是理想之选。它运用了TeledyneImaging的先进CMOS架构,为大面积、高分辨率、高速
    的头像 发表于 02-21 17:05 1268次阅读
    高速、<b class='flag-5'>高分辨率</b>、大面积成像应用的理想选择——Falcon4-CLHS工业相机

    折射率波导介绍

    半导体材料被蚀刻移除后,剩余的柱状结构与周遭的空气之间折射率差异也因此增加,因此在柱状结构中电子电洞对辐射复合产生的光子有机会因为半导体材料与空气介面处折射率差异形成的全反射而被局限在柱状结构中
    的头像 发表于 01-15 09:58 1018次阅读
    <b class='flag-5'>折射率</b>波导介绍

    highLIGHT 高分辨率平场XUV光谱仪介绍

    ,beamline产品等。主要团队由x射线、光谱、光栅设计、等离子体物理、beamline等领域的专家组成。并与全球领先的研究机构的科学家维持紧密合作,关注前沿技术,保持产品的迭代与创新。 产品优势: ● 平场掠入射光谱仪 ● 好的光谱
    的头像 发表于 01-14 06:23 796次阅读
    highLIGHT <b class='flag-5'>高分辨率</b>平场XUV<b class='flag-5'>光谱仪</b>介绍

    24位或者说高分辨率的AD到底有什么用呢?

    的AD,如24位的AD,其分辨率达到很低的uV级别,我们如何考究其精度?而且AD的精度受到诸多因素的影响,其中参考源的稳定度和供电电源的稳定度对精度影响很大,参考源最低0.05%的精度,那么24位的分辨率所可以达到的精度却是要大打折扣的,请问在这样的情况下,24位或者说
    发表于 01-07 06:49

    如何提高透镜成像的分辨率

    无法将所有光线完美汇聚到一个点上,导致成像模糊。减少像差可以提高分辨率: 优化透镜设计 :使用非球面透镜、复合透镜等设计,可以减少球面像差和色差。 使用高质量材料 :透镜材料的均匀性和折射率的稳定性对减少像差至关重要。
    的头像 发表于 12-25 16:54 1761次阅读