0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用LDO进行设计的一些鲜为人知的方面

冬至子 来源:谷泰微电子 作者:谷泰微电子 2023-08-23 11:36 次阅读

低压差线性稳压器 (LDO) 在电路设计中无处不在。许多只有三个终端;VIN、VOUT 和 GND。什么可能出错?某些 LDO 设计标准已得到充分证明,例如需要观察正确的输出电容和等效串联电阻 (ESR)。现代 LDO 使这变得更加容易,因为它们支持各种输出电容器,包括低 ESR 陶瓷类型。电源抑制 (PSRR) 等 LDO 性能指标也受到关注,因为该指标定义了 LDO 抑制其输入纹波和噪声的效率。

本文介绍了使用 LDO 进行设计的一些鲜为人知的方面。

重复负载瞬态行为

即使使用低 VIN-VOUT 差分,TPS7A84A 低噪声 LDO 也能正常工作。LDO 数据表通常会显示负载瞬态行为的波形。阅读数据表时,重要的是要注意获取数据的测试条件。显示了两条曲线,唯一的区别是添加了负载瞬态的原始基本负载。当施加负载瞬态时,输出电压会下降并恢复,因为电流从输出电容器中汲取,并且在 LDO 的控制环路做出反应以打开通路 FET 后的短时间内更难提供增加的负载电流并返回 VOUT为名义上的。

红色曲线适用于 3A-0.5A=2.5A 的负载瞬态,黑色曲线适用于 3A-0.1A=2.9A 的负载瞬态。正如预期的那样,较大的负载瞬态黑色曲线显示出比红色更深的下降,但两者的性能都非常好,VOUT 下降只有 20-30mV。有趣的是,移除负载阶跃时的过冲扰动大于且持续时间长于施加负载阶跃时的扰动。过冲幅度随着原始负载电流的减小而增加。通常,当移除负载时,LDO 会短暂地继续提供其负载电流,为输出电容器充电并导致过冲。不久之后,LDO 中的控制回路做出反应,逐渐关闭其通路 FET,以使输出降至其标称电压。绝大多数 LDO 不能主动吸收负载电流,只能提供负载电流,因此唯一将输出电容器放电至其标称 VOUT 的就是原始负载。在图 1 中,500mA 原始负载(红色曲线)将比 100mA(黑色曲线)更快地对输出电容器放电,并且 VOUT 更快地恢复到其标称电压。

原始负载越低,负载瞬态消除后 LDO 将其 VOUT 恢复到标称值所需的时间就越长。现在,如果负载瞬态是重复的,例如某些 RF 类型负载的情况,那么图 2 的结果显示了 0.56A 的负载以 2kHz 的速率添加/移除到设置为 1.4V o/p 的 LDO . 负载被移除然后重新应用之间的实际时间是 0.4 毫秒。在图 2 中,第一个负载瞬态应用和移除会产生较低的下冲和过冲(VOUT 的下降约为 8.5mV),但第二个、第三个和随后的负载瞬态表现出更差的性能。下降已恶化至 ~112mV,即 VOUT 的 8%。

图 2:蓝色迹线 – LDO 的 VOUT,交流耦合 40mV/div,0.2ms/div。红色迹线 – 负载阶跃(低时增加负载,高时去除负载)。LDO VIN=VBIAS=1.8V。LDO VOUT=1.4V。LDO 输出电容为 47μF + 2x 10μF。LDO 输入电容为 47μF + 2x 10μF

为什么是这样?原因是在第一次和第二次负载瞬态应用和移除之间,VOUT 尚未恢复到其标称电压,因为对输出电容器放电的原始负载电流现在约为 0mA。VOUT 缓慢返回其标称电压。因此,LDO 中的控制环路仍在命令 pass-FET 完全关闭。当第二个负载瞬变发生时,控制环路检测到 VOUT 正在下降,并且必须以相反的方式做出反应,以完全打开其通路 FET,以增加通过它的电流以对其输出电容器进行再充电并支持增加的负载。这需要时间,因此与第一个负载瞬态相比,VOUT 下降得更多。

图 3:与图 2 相同的条件,只是在 VOUT 上添加了 10Ω 假负载

LDO 可能比 DC/DC 转换器更嘈杂**!?**

通常,当需要安静的电源轨时,会使用 LDO。LDO 会比 DC/DC 转换器更嘈杂吗?有可能的用例。LDO 的输出噪声在 LDO 内部产生,主要由其参考电压噪声组成。LDO 的 VIN 上出现的噪声和纹波电压被其 PSRR 抑制,并在 VOUT 上出现衰减。正如我们所见,负载瞬变也会干扰 LDO 的输出电压,其控制环路旨在衰减这种情况。这三种噪声和纹波源也存在于 dc/dc 转换器中,此外,与 LDO 不同,它们的输出端也存在开关噪声和纹波。当需要安静的电源轨时,它们的输出上没有开关噪声和纹波通常使 LDO 成为最佳选择。

对于 LDO,其输出上的负载电流与其输入上出现的负载电流相同。LDO 输出上的 1A 负载瞬态干扰会作为 1A 负载瞬态反映到其输入端,因此也会反映到为 LDO 供电的上游转换器。输入端的 1A 负载瞬变会干扰为 LDO 供电的上游转换器——它还必须响应电流的这种变化。这会在加载负载时导致电压骤降,而在移除负载时会导致过冲。上游转换器输出上的这种噪声源很容易成为其输出中最大的噪声分量,即使它是一个 DC/DC 转换器。如果 dc/dc 转换器输出还为其他更敏感的负载供电,那么它们将暴露于该纹波电压,并且它们可能会以降低的性能运行。如果将 LDO 替换为 dc/dc 转换器,则 dc/dc 转换器的输入电流是其输出电流乘以占空比,D=VOUT/VIN,忽略损耗并在一个开关周期内取平均值。因此,为该 dc/dc 转换器供电的上游 dc/dc 转换器在其输出上经历较低的负载瞬变,并且上游 dc/dc 转换器对其 VOUT 的干扰较小。因此,LDO 可能比 dc/dc 转换器噪声更大,但不是在其输出上,而是在为其供电的上游转换器的输出上。

LDO 对低噪声模拟前端 (AFE) 的热效应

LDO 通常用于为 AFE 提供安静的电源轨。LDO 中的功耗仅由 Iout(VIN-VOUT) 给出,负载电流远大于 LDO 的静态电流。如果负载电流 (Iout) 很大和/或 VIN-VOUT 差异很大,则耗散功率可能很大。随着 IC 封装趋于小型化,LDO 中的温升可能会非常显着,从而导致印刷电路板 (PCB) 上出现热点。热量通过 LDO 封装散热焊盘连接到的接地层从 LDO 扩散到 PCB。AFE 的一个关键性能指标是它们的信噪比(S/N 比)。噪声电压的一个分量是 Johnson/Nyquist 噪声,由 V(rms) = sqrt(4kTBR) 给出,其中 T 是以开尔文为单位的绝对温度,B 是带宽,R 是电阻,k 是玻尔兹曼常数。将热 LDO 靠近 AFE 放置也会使 AFE 的温度升高,增加噪声,降低 S/N,对系统的整体性能有明显的影响。虽然将 LDO 放置在靠近 AFE 的位置很好,但应避免将其放置得太近。对于拥挤的 PCB,还考虑移除一些铜接地层以防止热量传递到 AFE,但要适度,以免干扰从 AFE 到 LDO 的接地返回电流路径。

结论

本文重点介绍了在系统中应用 LDO 时需要注意的三个问题。LDO 仍然是电源转换的绝佳选择,但像往常一样,最好了解并避免此类应用问题。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电容器
    +关注

    关注

    63

    文章

    5814

    浏览量

    96782
  • 转换器
    +关注

    关注

    27

    文章

    8208

    浏览量

    141879
  • LDO电源
    +关注

    关注

    0

    文章

    58

    浏览量

    10384
  • PSRR
    +关注

    关注

    0

    文章

    146

    浏览量

    39065
  • 低压差线性稳压器

    关注

    0

    文章

    88

    浏览量

    12318
收藏 人收藏

    评论

    相关推荐

    使用LDO进行设计的一些鲜为人知方面

    (ESR)。现代 LDO 使这变得更加容易,因为它们支持各种输出电容器,包括低 ESR 陶瓷类型。电源抑制 (PSRR) 等 LDO 性能指标也受到关注,因为该指标定义了 LDO 抑制其输入纹波和噪声的效率。 本文介绍了使用
    的头像 发表于 04-12 13:51 1.2w次阅读
    使用<b class='flag-5'>LDO</b><b class='flag-5'>进行</b>设计的<b class='flag-5'>一些</b><b class='flag-5'>鲜为人知</b>的<b class='flag-5'>方面</b>

    液晶显示器鲜为人知的技术细节(全方面认识LCD)

    液晶显示器鲜为人知的技术细节(全方面认识LCD)液晶显示器的专业技术知识彩色迷魂阵: 16.7/16.2百万色的差异 无可否认,目前LCD显示器成为CRT的继任者已经是大势所趋,虽然目前CRT
    发表于 10-29 22:49

    Excel的35招必学秘技

    是Excel全部技巧的百分之。本专题从Excel中的一些鲜为人知的技巧入手,领略下关于Excel的别样风情.
    发表于 01-17 14:26

    鲜为人知的秘密—键盘选购技巧

    鲜为人知的秘密—键盘选购技巧  很多用户在购买电脑配件的时候,对CPU、主板、显卡等主要部件慎之又慎,即便是鼠标和机箱也选之又选,不过说到另外个主要输入设备键盘,许多购机者却认为没有精挑细选的必要
    发表于 02-23 16:25

    鲜为人知的编程事实

    David Veksler曾发表过篇博文“Some lesser-known truths about programming”,列出了一些鲜为人知的编程事实,这些事实是什么呢?酷壳个人网站楼主陈
    发表于 08-04 20:16

    一些常见的DC-DC、LDO输出设计原理图

    一些常见的DC-DC、LDO输出设计原理图,输出3.3V、5V、-5V、12V、-12V、15V等,经过纹波测试5.6mv~30mv,具体可以通过自己的需求搭建电路,可以作为参考借鉴,具体使用规范可以参考数据手册。
    发表于 04-07 11:01

    介绍一些常用的LDO相关术语

    低压差稳压器(LDO)看似简单,但可提供重要功能,例如将负载与不干净的电源隔离开来或者构建低噪声电源来为敏感电路供电。本简短教程介绍了一些常用的LDO 相关术语,以及一些基本概念,如压
    发表于 11-12 06:07

    讲述LDO和DC-DC的一些差异

    DC-DC和LDO都是电源芯片,两者差异很大,用法也不同,这篇博客讲述LDO和DC-DC的一些差异,帮助更好的认识LDO和DC-DC并进行
    发表于 11-17 07:13

    讲述LDO和DC-DC的一些差异

    关注+星标公众号,不错过精彩内容转自:记得诚电子设计DC-DC和LDO都是电源芯片,两者差异很大,用法也不同,这篇博客讲述LDO和DC-DC的一些差异,帮助更好的认识LDO和DC-DC
    发表于 11-17 08:26

    使用STM32cubemx进行一些串口

    STM32cubemx_W5500_TCP和Modbus/TCP以STM32f103zet6开发板为平台使用STM32cubemx进行一些串口,spi等接口的初始化。使用的是野火的w5500模块,以
    发表于 01-19 07:51

    【专栏精选】工程师必必会电源电路项目设计集锦

    稳压,以消除开关噪声。通过这种参考设计,让工程师能够自行决定如何进行噪声和精确度之间折中。4、使用LDO进行设计的一些鲜为人知
    发表于 04-15 10:24

    鲜为人知的手机特殊功能

    鲜为人知的手机特殊功能      1、你的手机电量不足了,为了
    发表于 12-19 15:09 863次阅读

    那些鲜为人知的非主流移动操作系统

    以操作系统来说,Google Android及苹果(Apple)iOS两大龙头占据过半市场,其余则由数个小众系统瓜分。不过这些非主流操作系统中存在数个鲜为人知但风格独特的操作系统,值得一探究竟。
    发表于 06-30 09:02 5707次阅读

    PCB软件不为人知的技巧

    PCB软件不为人知的技巧,该技巧鲜为人知
    发表于 08-29 14:22 17次下载

    最后悔的事情,马云鲜为人知的柔情面

    在我们的印象当中,马云是一个在互联网电商领域叱咤风雨的枭雄,一个被今天很多年轻人视为互联网创业大神的人物。可即便是在他那样的铮铮铁骨之下,也隐藏着鲜为人知的柔情。
    发表于 12-21 02:33 440次阅读