0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微流控+拉曼光谱+机器学习实现蛋白质颗粒的智能鉴定

微流控 来源:微流控 2023-08-04 10:41 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

药品溶液中存在的颗粒或聚集体可能会引起免疫反应并影响产品安全性。随着越来越多的高浓度治疗性单克隆抗体(mAb)产品的开发和推出,根据美国药典<788>,在规格范围内需要控制亚可见颗粒水平,并且每个容器中粒径大于等于10 μm的颗粒不超过6000个,粒径大于等于25μm的颗粒不超过600个。单克隆抗体在应力条件下容易降解(例如聚集、片段化和氧化),从而产生多种蛋白质颗粒。在制造和储存过程中存在多种应力条件,例如振摇、高温暴露、化学或光诱导氧化以及极端pH值等。因此,在足够长的保质期内,实现对亚可见颗粒物的控制,变得极具挑战性。除了确定亚可见颗粒的数量以外,准确有效地表征蛋白质颗粒并了解其可能暴露的应力条件,在制造和储存期间采取补救措施并实施颗粒控制策略,对延长产品的保质期至关重要。

据麦姆斯咨询报道,近期,复旦大学马炯教授团队和中国科学院长春光机所李备研究团队在Talanta期刊上发表了题为“Closed, one-stop intelligent and accurate particle characterization based on micro-Raman spectroscopy and digital microfluidics”的论文。该研究提出了一种基于显微拉曼光谱技术和数字微流控芯片(DMF)对蛋白质颗粒进行智能表征的新方法,并且利用该方法以及机器学习模型成功地将多种应力条件下产生的蛋白质颗粒进行了分类,分类的精准度高于93%。

具体而言,在该研究中,研究人员提出了一种在DMF芯片上通过显微拉曼光谱对蛋白质颗粒进行智能表征的新方法。研究人员首先制备了八种应力类型诱导的蛋白质颗粒溶液,其中包括振摇、冷冻-解冻(FT10)、高温40°C、高温80°C、pH3振摇、pH10振摇、氧化振摇和2000 KLH的光暴露。利用以上应力条件进行诱导之后,研究人员将每种颗粒溶液加载到DMF芯片上进行电流控制,并且基于一组预先设计的指令(例如,电压、持续时间、速度和顺序等)进行分液,分出的液滴体积约为100 nL。该研究中的DMF芯片的顶板由石英制备制成,以最大程度地减少拉曼背景噪声,获取的拉曼光谱数据用于开发各种机器学习算法模型,以预测应力诱导条件下引起的蛋白质颗粒的分类。

f64c2608-3262-11ee-9e74-dac502259ad0.png

图1 蛋白质颗粒智能表征流程图 在该研究中,研究人员收集了不同应力条件下诱导产生的每种蛋白质颗粒溶液的220个拉曼光谱,并且选择波数为600cm⁻¹~1800 cm⁻¹的拉曼光谱以用于数据预处理和机器学习分析,其中波数为1200cm⁻¹~ 1700cm⁻¹的拉曼光谱区域揭示了酰胺I、酰胺II和酰胺III的蛋白二级结构信息。在不同应力诱导条件下,8种蛋白质颗粒样品中的酰胺I、酰胺II和酰胺III的蛋白二级结构信息以及C骨架信息,呈现出不同的变化,利用机器学习方法可以很好的进行检测分类,分类精准度大于98%。

f6b4e58a-3262-11ee-9e74-dac502259ad0.png

图2 蛋白质颗粒表征的拉曼光谱分析

f71490de-3262-11ee-9e74-dac502259ad0.png

图3 不同应力条件下形成的蛋白颗粒平均拉曼光谱及机器学习主成分分析

综上所述,该研究结合机器学习,开发了一种基于DMF的拉曼光谱颗粒表征分析方法,并成功表征和分类了8种应力诱导条件下的蛋白质颗粒。这种方法具有以下几个明显的优点。首先,封闭的DMF平台可以很好地防止样品制备和测试过程中的颗粒污染,以提高检测准确度。其次,它可以同时提供具有形态和化学结构信息的颗粒表征的一站式检测,以节省成本和时间并提高效率。此外,该方法仅消耗少量样品,并且DMF芯片上的颗粒液滴可以在拉曼测试后回收并重复使用,用于其他研究目的。最后,机器学习算法简化了复杂的拉曼光谱解析,并提供具有高分类精度的智能颗粒表征。这种新颖的颗粒表征方法可以极大地支持科学家确定颗粒形成的可能根本原因,并开发准确的数据驱动的颗粒控制策略,最终延长高浓度抗体产品在全生命周期管理期间的保质期。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    310

    浏览量

    19948
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • 数据预处理
    +关注

    关注

    1

    文章

    20

    浏览量

    2979
  • 拉曼光谱
    +关注

    关注

    0

    文章

    95

    浏览量

    3155

原文标题:微流控+拉曼光谱+机器学习,实现蛋白质颗粒的智能鉴定

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    常见增强光谱信号的技术详解

    RRS的能级过程,分子被入射光激发到电子激发态 信号十分的微弱。为了让技术更加方便易用,许多研究者致力于研究如何增强
    的头像 发表于 11-10 09:18 332次阅读
    常见增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>信号的技术详解

    光谱专题3 |揭秘光谱仪光栅选择密码,解锁微观世界的神奇利器

    在微观世界的探索之旅中,光谱仪无疑是科研人员和工程师们的得力助手。而在拉光谱仪中,衍射光栅扮演着至关重要的角色,它能将多色光分离成其组
    的头像 发表于 11-05 11:05 817次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>专题3 |揭秘<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>仪光栅选择密码,解锁微观世界的神奇利器

    光谱的基础知识

    想象一下,如果我们能够"听见"分子的"声音",那会是什么样的?光谱技术正是这样一种神奇的工具,它能够探测分子内部原子的振动模式,就像听音乐一样识别不同的分子"指纹"。
    的头像 发表于 09-17 16:11 1920次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的基础知识

    一文读懂共聚焦显微镜

    效应在1928年已经由Chandrasekara-Raman发现(两年后被授予诺贝尔物理学奖),但常规的光谱实验直到1960年代激光
    的头像 发表于 09-09 09:50 965次阅读
    一文读懂共聚焦<b class='flag-5'>拉</b><b class='flag-5'>曼</b>显微镜

    火极一时的AI蛋白质解析,怎么样了?

    AI蛋白质解析领域正在经历一场静水流深的变革
    的头像 发表于 07-27 17:18 2170次阅读
    火极一时的AI<b class='flag-5'>蛋白质</b>解析,怎么样了?

    光谱专题2 | 光谱中的共聚焦方式,您选对了吗?

    光谱专题2|光谱中的共聚焦方式,您选对了吗?——共聚焦技术与AUT-XperRam共聚焦
    的头像 发表于 07-23 11:05 1822次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>专题2 | <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>中的共聚焦方式,您选对了吗?

    自动聚焦光谱技术在拉化学成像的应用

    新推出自动聚焦光谱系统通过智能化实时调焦技术,显著提升样品检测的可靠性和效率,有效解决样品表面不平整等导致的聚焦困难、信号采集不稳定等问题,具备高稳定、高分辨率、高速扫描等性能优势
    的头像 发表于 07-15 17:05 431次阅读
    自动聚焦<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>技术在拉<b class='flag-5'>曼</b>化学成像的应用

    光谱专题1 | 光谱揭秘:新手也能轻松迈入光谱学之门

    你是否想过,一束光照射物质后,能揭开其分子层面的秘密?今天,就让我们走进神奇的光谱世界,哪怕是光谱学小白,也能轻松入门!光照射物质时,大部分光子如同调皮的孩子,以瑞利散射的形式“原
    的头像 发表于 06-23 11:07 2774次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>专题1 | <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>揭秘:新手也能轻松迈入<b class='flag-5'>光谱</b>学之门

    超窄带低波数滤光片的新升级(from 360-3000nm)

    )是目前实现超低波数光谱(通常50cm-1以下才称为超低波数)测量最常用的方法。随着技术
    的头像 发表于 05-28 11:13 2184次阅读
    超窄带低波数<b class='flag-5'>拉</b><b class='flag-5'>曼</b>滤光片的新升级(from 360-3000nm)

    应用介绍 | 单光子计数光谱

    单光子计数光谱实验装置示意图脉冲激光聚焦在样品表面,激发样品产生荧光和散射,单光子探测器探测这些受激发射和散射。TimeTagger
    的头像 发表于 05-20 16:07 638次阅读
    应用介绍 | 单光子计数<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>

    为什么选对激光波长对光谱很重要

    对于刚接触光谱的研究者,最常提出的问题是:"我需要什么激光激发波长?" 答案显然取决于待测材料本身。材料的散射截面及其物理光学特性都
    的头像 发表于 04-29 09:13 605次阅读

    超窄带低波数滤光片的新升级(from 350nm to 3000nm)

    超窄带陷波滤光片(Bragg Notch Filter,简称BNF)和带通滤光片(Bragg Bandpass Filter,简称BPF)是目前实现超低波数光谱(通常50cm-1以
    的头像 发表于 04-09 16:54 668次阅读
    超窄带低波数<b class='flag-5'>拉</b><b class='flag-5'>曼</b>滤光片的新升级(from 350nm to 3000nm)

    华为依托昇腾AI打造蛋白结构预测工具

    蛋白质结构预测一直是“21世纪的生物物理学”最重要的课题之一,北京昌平实验室联合伙伴基于全场景AI框架“昇思MINDSPORE”开发的蛋白质结构预测模型在CAMEO竞赛拿下第一并霸榜四周,填补了中国AI基础软硬件在蛋白质结构预测
    的头像 发表于 03-03 13:52 853次阅读

    光谱在食品安全检测中的应用

    与红外光谱相比,光谱的适用性更好。光谱技术具
    的头像 发表于 01-07 14:19 1209次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>在食品安全检测中的应用

    高压放大器在气体光谱检测技术研究中的应用

    实验名称:气体光谱检测装置的设计与搭建 测试目的:开展气体光谱检测技术的研究,并设计基于
    的头像 发表于 12-12 10:57 745次阅读
    高压放大器在气体<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测技术研究中的应用