0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

滨松SLM助力突破光学衍射极限

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-07-26 06:49 次阅读

继Science又拿一稿,滨松SLM参与飞秒激光极端制造新突破之后,滨松空间光调制器(SLM)又一次成为浙江大学、之江实验室超分辨双光子聚合系统光场调控的核心器件。

最近,浙江大学、之江实验室刘旭教授和匡翠方教授团队基于前期远场超分辨技术的研究经验,提出了一种新型的双通道激光纳米直写方法。该方法突破了光学衍射极限,提高了激光直写“打印”的精度和速度。

研究成果以“Direct laser writing breaking diffraction barrier based on two-focus parallelperipheral-photoinhibition lithography”为题发表在Advanced Photonics 上。

wKgZomTAUXyAaTBjAAD1bAIiv1A877.png

wKgaomTAUX2ANOxNAAEOH_S2ARQ703.png

图1 论文原文展示团队深入研究发展了暗斑调控技术、双通道调控技术、边缘光抑制技术、防漂移技术、三维模型解析技术和新型光刻胶技术。所研制的装置刻写效率比市面上的单通道装置产品提升一倍,最小二维线宽达到40 nm,空间悬浮线横向线宽稳定在20-30 nm。基于偏振独立调控技术,实现了通道间的独立控制,双通道可以并行打印不同的任务。突破了传统并行方法局限于周期性结构打印的问题,能广泛应用于制造非周期性结构和高度复杂结构。这进一步扩展了激光直写光学制造的潜在应用范围,使该装置有望成为可支持众多领域发展的实用支撑设备。

wKgZomTAUX2AXAi5AADmvi9JuWA979.png

wKgaomTAUX2AA6lmAAHPCk-vV_M175.png

图2 双通道超衍射极限激光直写装置

wKgZomTAUX6ALgokAAEWMDol-9o258.png

图3 亚50 nm线宽结构

采用激光直写打印比特点结构在大数据光存储方面具有极大的应用潜力。图4展示了双通道系统在打印比特点图案上的能力,其中,(a)图是打印结果的扫描电子显微镜图,(b)、(c)图分别是(a)中黄色和蓝色方框的放大图,比特点的水平和垂直间距为200 nm,比例尺为1 μm。(a)图中的上半部分采用边缘光抑制打印,点结构间隙清晰可辨;相比之下,采用传统双光子打印的下半部分,点结构十分模糊。正常的单光束路径系统中,这两行必须单独打印;而在双通道系统中,两个图案可同时打印,可见该方法的效率是普通单光路系统的两倍。

wKgaomTAUX6ANQk2AACSaIV-lFM509.jpg

图4 位点图形打印结果

为了测试实际3D纳米结构的并行打印效果,研究人员还打印了超材料结构立方体。打印结果如图5所示。

wKgZomTAUX6AIYE1AAFonIKsW9w105.png

图5 超材料立方体打印结果在上述研究中,研究团队选择了两款滨松空间光调制器(SLM)作为核心实验仪器。

wKgaomTAUX-AKbHsAADXbP7OSSo934.png

图6 滨松空间光调制器,点击获取产品资料超分辨双光子聚合需要将超快激光完美聚焦至衍射极限,抑制光则需构建为环形光束并精确与工作激光重合,对系统的像差、稳定性、位相调控精度和准确度都有极高要求。

刘旭教授和匡翠方教授团队在使用过滨松的SLM后表示:

系统中采用的两款滨松SLM分别用于实现对780 nm脉冲激发光和532 nm连续抑制光的调控。滨松SLM在超分辨双光子聚合系统作为光场调控的核心器件表现不俗,具有诸多优势功能:

具备完备的二次开发包及例程,方便科研人员完成自定义功能和应用程序开发;

高效率:采用介质反射膜,95%光利用率,充分利用激光能量;

低吸收、高损伤阈值:可使用较高功率激光以实现多路并行操作,即使在无水冷情况下也具备高功率适应性和稳定性;

精密准确的位相调节和位相稳定性:满足十纳米量级超分辨双光子聚合对光斑、对准、指向性的精密控制和稳定运行的要求;

外形设计简洁、紧凑,使用方便,易于集成。

wKgZomTAUX-AKW7uAAA-I6OAkFI493.jpg

图7 论文原文:滨松SLM可进行多焦点并行加工

滨松早在1980年就已经开始了空间光调制器的研发历程。本着探索人类未知未涉的精神,一代一代产品的更新换代,一代一代技术的推陈出新,到今年已经走过了42个年头。

wKgaomTAUX-Aal_CAAEE-_II90s289.png

图8 滨松空间光调制器发展历程

这几年,滨松中国工程师,比如说大家熟知的大师姐、梓爷,都不断地在滨松官微、B站账号、技术文章网站SHARE等平台推出了许多技术干货,涵盖产品剖析、参数解析、算法介绍、软件讲解、应用介绍、常见问题解答等等。(点击“空间光调制器”,即可获得往期文章合集。)

我们非常真诚地希望帮助用户了解SLM、用好SLM,将它带去广袤的应用世界,成为研究者们、制造者们开拓未知未涉的一份坚实力量。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 衍射
    +关注

    关注

    0

    文章

    15

    浏览量

    9185
  • 光调制器
    +关注

    关注

    0

    文章

    76

    浏览量

    8261
  • SLM
    SLM
    +关注

    关注

    0

    文章

    64

    浏览量

    6717
收藏 人收藏

    评论

    相关推荐

    SJ5900光学型轮廓仪:衍射非球面精准测量新利器

    衍射非球面是一种特殊形状的光学元件,其曲率在不同方向上不均匀变化,与传统的球面形状不同,在衍射非球面上,光线通过非球面的表面时会发生衍射现象,这种
    的头像 发表于 04-20 08:08 259次阅读
    SJ5900<b class='flag-5'>光学</b>型轮廓仪:<b class='flag-5'>衍射</b>非球面精准测量新利器

    探索极限光学魔法:滨松LCOS-SLM在超快激光加工的前沿突破

      滨松液晶-硅基空间光调制器(LCOS-SLM)在超快激光加工领域日益彰显其引领地位,其独特的三维多点整形功能为激光切割带来了突破性的“长焦深”贝塞尔光,为加工过程带来新的可能性。本文为您带来
    的头像 发表于 02-18 08:59 242次阅读
    探索<b class='flag-5'>极限</b>的<b class='flag-5'>光学</b>魔法:滨松LCOS-<b class='flag-5'>SLM</b>在超快激光加工的前沿<b class='flag-5'>突破</b>

    计算光学成像如何突破传统光学成像极限

    传统光学成像建立在几何光学基础上,借鉴人眼视觉“所见即所得”的原理,而忽略了诸多光学高维信息。当前传统光学成像在硬件功能、成像性能方面接近物理极限
    发表于 11-17 17:08 253次阅读
    计算<b class='flag-5'>光学</b>成像如何<b class='flag-5'>突破</b>传统<b class='flag-5'>光学</b>成像<b class='flag-5'>极限</b>

    基于SLM的彩色全息系统

    ,以R、G、B激光作为光源,利用光调制器件承载全息图实现对激光的调制,进而实现彩色全息显示,该技术具有灵活性、便于处理、衍射效率高等优点。 SLM加载合适的全息图具有再现任意光场的潜力,即基于此的全息显示系统具有三维信息展示的潜在优势
    的头像 发表于 08-11 10:33 426次阅读
    基于<b class='flag-5'>SLM</b>的彩色全息系统

    空间光调制器LCOS-SLM的使用

        SLM(Spatial Light Modulator,空间光调制器)是可以调节光波前的振幅或相位的光学器件。 基于LCOS(Liquid Crystal On Silicon, 硅基液晶
    的头像 发表于 07-18 06:44 648次阅读
    空间光调制器LCOS-<b class='flag-5'>SLM</b>的使用

    衍射混合成像光学系统设计

    系统,一个仅由两个镜片构成的CMOS相机光学系统和一个较复杂的中等焦距、大孔径、大视场照相系统。这些系统突破了传统光学系统在结构、性能、体积和重量方面的限制,在光学设计理论上具有重要意
    的头像 发表于 07-02 09:59 505次阅读
    折<b class='flag-5'>衍射</b>混合成像<b class='flag-5'>光学</b>系统设计

    哈工大突破高通量超分辨显微成像难题

    超分辨成像技术的出现标志着成像领域对于光学衍射极限突破,也极大地推动了生物医学领域的发展。利用超分辨技术,生物学家得以对病态细胞内的亚细胞结构进行精准的量化统计和直观的可视化分析。
    的头像 发表于 06-21 10:21 333次阅读
    哈工大<b class='flag-5'>突破</b>高通量超分辨显微成像难题

    生物医学超分辨显微成像技术领域取得突破性进展

    超分辨成像技术的出现标志着成像领域对于光学衍射极限突破,也极大地推动了生物医学领域的发展。
    发表于 06-21 10:21 390次阅读
    生物医学超分辨显微成像技术领域取得<b class='flag-5'>突破</b>性进展

    Up to 98%光利用率——镀介质镜型纯相位高速高损伤阈值SLM

    Meadowlark Optics 的硅基液晶 (LCoS) 空间光调制器 (SLM) 专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。 这种组合为用户提供最快的响应时间和高相位稳定性。这些SLM 适用于需要高速、高衍射
    的头像 发表于 06-08 10:44 479次阅读
    Up to 98%光利用率——镀介质镜型纯相位高速高损伤阈值<b class='flag-5'>SLM</b>!

    衍射光栅的核心应用(四)

    衍射光栅是一种高分辨率的光学色散元件。随着衍射光栅制造技术的不断发展,各类型的光栅相继而出,光栅的用途也日益广泛,如今衍射光栅不仅可用于光谱学,还能广泛用于惯性约束聚变、激光加工、天文
    的头像 发表于 05-29 07:07 364次阅读

    衍射光栅的核心应用(三)

    衍射光栅是一种高分辨率的光学色散元件。随着衍射光栅制造技术的不断发展,各类型的光栅相继而出,光栅的用途也日益广泛,如今衍射光栅不仅可用于光谱学,还能广泛用于惯性约束聚变、激光加工、天文
    的头像 发表于 05-29 07:06 364次阅读
    <b class='flag-5'>衍射</b>光栅的核心应用(三)

    衍射光栅的核心应用(一)

    衍射光栅是一种高分辨率的光学色散元件。随着衍射光栅制造技术的不断发展,各类型的光栅相继而出,光栅的用途也日益广泛,如今衍射光栅不仅可用于光谱学,还能广泛用于惯性约束聚变、激光加工、天文
    的头像 发表于 05-26 07:12 919次阅读

    衍射光栅的核心应用(二)

    衍射光栅是一种高分辨率的光学色散元件。随着衍射光栅制造技术的不断发展,各类型的光栅相继而出,光栅的用途也日益广泛,如今衍射光栅不仅可用于光谱学,还能广泛用于惯性约束聚变、激光加工、天文
    的头像 发表于 05-26 07:11 493次阅读
    <b class='flag-5'>衍射</b>光栅的核心应用(二)

    突破衍射极限,还看“近场光学

    极小的物体被放大几千倍,各种物质的丰富细节徐徐展开,人类观察自然界的视野得到极大拓宽——这是光学显微镜赋予人类的“超能力”。不过,无限提高放大倍数是不可能的。由于衍射效应的存在,传统光学显微镜的分辨率不能超过光波长的一半。
    的头像 发表于 05-22 09:58 454次阅读

    空间光调制器LCOS-SLM衍射效率

    一级衍射效率是LCOS真正的“衍射效率”,是通过加载闪耀光栅时(将LCOS作为光栅使用)一级衍射光的能量占不加光栅时的零级光能量的百分比来定义的。
    的头像 发表于 05-18 07:02 570次阅读
    空间光调制器LCOS-<b class='flag-5'>SLM</b>的<b class='flag-5'>衍射</b>效率