0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为什么量子纠缠是量子信息的资源?

中科院半导体所 来源:墨子沙龙 2023-05-20 11:39 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着量子物理以及相关技术的发展,特别是量子力学基本问题的研究,量子信息科学逐步兴起。其中贝尔不等式和量子纠缠的研究起了重要作用,演示了量子纠缠的重要性。量子纠缠引起更广泛的关注,是因为量子纠缠已经成为量子信息处理的资源[1-4]。例如,利用量子纠缠可以实现量子隐形传态。

1 量子态不可复制

作为量子力学的线性叠加原理的后果,量子信息科学中有一个叫做“量子态不可复制”的基本定理:不可能存在一个基于量子力学演化的机器,它能够复制任意的未知的量子态[5-6]。如果有这样的机器,作为一个演化算符U,复制过程是b702d310-f410-11ed-90ce-dac502259ad0.pngb714c7c8-f410-11ed-90ce-dac502259ad0.png是被复制的态,b731b248-f410-11ed-90ce-dac502259ad0.png代表复制前的复本空白状态,b73e2b72-f410-11ed-90ce-dac502259ad0.png代表机器在复制前后的量子态。同理,对于另一个被复制的态b74a4c04-f410-11ed-90ce-dac502259ad0.png,复制过程是b754878c-f410-11ed-90ce-dac502259ad0.png。而对于b766ac1e-f410-11ed-90ce-dac502259ad0.png的任意线性叠加态b77597ce-f410-11ed-90ce-dac502259ad0.png,复制过程应该 b78b6a0e-f410-11ed-90ce-dac502259ad0.png。但是另一方面,根据量子力学的线性叠加原理,

b79dfda4-f410-11ed-90ce-dac502259ad0.png

与期望的复制过程不同。因此不存在复制机器。

因此如果一个任意量子态从一个载体,经过某个过程,转移到另一个载体上,那么原来的载体上的量子态就肯定改变了。这体现于量子隐形传态中。

2 量子隐形传态

1993年,本内特(C. H. Bennett)、布拉萨尔(G. Brassard)、克雷波(C. Crépeau)、乔萨(R. Jozsa)、佩雷斯(A. Peres)和伍特尔斯(W. K. Wootters) 提出量子隐形传态方案,借助量子纠缠和经典通信,将未知量子态从第一个粒子(下图中记作A)传到远方的第二个粒子(下图中记作C)上[7]。第三个粒子(下图中记作B)与第一个粒子处于同一地点,但是与第二个粒子纠缠,处于某个贝尔态,不失一般性,可以用b7c64f84-f410-11ed-90ce-dac502259ad0.png。将第一个粒子的态记作b7d78308-f410-11ed-90ce-dac502259ad0.png。3个粒子的量子态是

b7ea5744-f410-11ed-90ce-dac502259ad0.png

其中X和Z都是某种操作,而且逆操作是它们自己。具体来说,这里每个粒子都是里一个量子比特,也就是说,

b7fb46e4-f410-11ed-90ce-dac502259ad0.png

Alice控制A和B粒子,对它们进行以贝尔纠缠态为基的测量(叫做贝尔测量),并将测量结果以经典通信通知控制C粒子的Bob,后者对C粒子采取相应操作。 Alice对A和B粒子进行贝尔测量后,她知道三个粒子状态成为上面数学表达式的4项之一,将结果告诉Bob,Bob相应地做写在b822e820-f410-11ed-90ce-dac502259ad0.png前面的操作的逆操作(碰巧等于原操作)——如果Alice得到b82eca64-f410-11ed-90ce-dac502259ad0.png,Bob不做任何操作;如果Alice得到b8415b48-f410-11ed-90ce-dac502259ad0.png,Bob得知结果后,做Z操作;如果Alice得到b8537f3a-f410-11ed-90ce-dac502259ad0.png,Bob得知结果后,做X操作;如果Alice得到b86b6690-f410-11ed-90ce-dac502259ad0.png,Bob得知结果后,做ZX操作。这样最后得到的C粒子的状态总是b87be5f6-f410-11ed-90ce-dac502259ad0.png。 粒子本身没有被传送,是量子态被传送,而该量子态原来的载体(A粒子)则改变了量子态,事实上变成与B粒子处于一个纠缠态,而且经典通信在量子态的传送中起了重要作用。这样,虽然Alice和Bob不知道被传的态是什么,但是这个态从A粒子传到了C粒子。注意,一个关键的步骤是Alice将测量结果通知Bob,否则量子态传送是不可能实现的。妙处是Alice和Bob都不知道被传的态,而且粒子本身没有传送。  

量子纠缠和量子隐形传态都不可能瞬间传递信息。如果Alice和Bob仅仅对两个纠缠粒子分别测量,是无法实现信息传递的,这是因为如果Alice不将对第一个粒子的测量结果通知Bob,后者是观测不到第二个粒子的任何变化的,观测结果与坍缩前的量子态也是完全融洽的(因为有随机性)。因此这里没有超光速信号的传输,量子纠缠并不违反相对论。对相对论的遵守也体现在量子隐形传态中,Alice必须将测量结果告诉Bob。

事实上,任何信号传输都不能超过光速。 1997年,塞林格(A. Zeilinger)组[8]和马丁尼(F. De Martini)组[9]分别在实验上实现了量子隐形传态。 正如量子隐形传态的最初理论文章中也提到的,量子隐形传态可以推广如下:粒子1和2处于一个贝尔纠缠态,粒子3和4处于另一个同样的贝尔纠缠态;粒子2和3一起被做贝尔测量,结果粒子1和4就会处于一个纠缠态,虽然它们没有相遇。这可以从下式看出,

b88f0b4a-f410-11ed-90ce-dac502259ad0.png

塞林格参与的一个理论工作将之称为纠缠交换,并指出这可以用于检测纠缠对的产生[10]。1998年,塞林格组在实验上实现了纠缠交换[11]。中国学者潘建伟作为研究组成员参加了这两个量子隐形传态和纠缠交换实验。

3 量子卫星与量子密钥分发

量子信息技术的一个重要目标是实现长距离的量子纠缠,其中一个技术途径是用光纤,但是光有衰减,所以需要中继。经典中继器显然依赖于复制。但是量子态不能被复制,因此量子中继与经典中继器不同。 一个解决方法是借助卫星,因为大气以上的自由空间中,光衰减很小。中国的潘建伟研究团队用2016年发射的墨子号卫星实现了这个方案,实现了卫星与北京附近的兴隆地面站之间(相距1200公里)的BB84方案的密钥分发[12]。BB84方案是Bennett和Brassard于1984年的提出的量子密钥分发方案,不需要量子纠缠[13]。

不用卫星,但是作为卫星工作的技术准备,他们在青海湖附近实现了约100公里距离的量子纠缠、量子隐形传态和Bell-CHSH不等式违反(S=2.51±0.21,无局域性漏洞)实验,充分验证了利用卫星实现量子通信的可行性,2017年,利用卫星实现了阿里地面站和墨子号卫星之间1400公里的量子隐形传态[14]。墨子号卫星还将纠缠光子分发到青海的德令哈和云南的丽江(相距1203公里),观察到双光子纠缠以及Bell-CHSH不等式违反(S=2.37±0.09,无局域性漏洞)[15]。后来,又与塞林格组合作,实现了在中国与奥地利之间的密钥分发(无量子纠缠)[16]。

卫星还有望取得进一步成就[17]。 另一个途径是所谓量子中继器,基于纠缠交换,通过多个节点,实现长程纠缠。除了有效的纠缠交换,还需要好的量子存储,因为在一方的许多次纠缠交换过程中,另一方必须保持量子态不变。这些技术结合起来,可以导致全球量子网络的建立。 1991年,Artur Ekert提出一种基于量子纠缠态的量子密钥分发方案[18]。这叫Ekert91方案。Alice和Bob共享来自一个独立源的处于的纠缠量子比特(自旋、光子偏振或者其他载体)。他们分别随机在3个方向b8b15d4e-f410-11ed-90ce-dac502259ad0.pngb8c55c9a-f410-11ed-90ce-dac502259ad0.png测量所拥有的量子比特。b8b15d4e-f410-11ed-90ce-dac502259ad0.png分别是90度、135度、180度方向,b8c55c9a-f410-11ed-90ce-dac502259ad0.png分别是135度、180度、225度方向。b8f50184-f410-11ed-90ce-dac502259ad0.png方向的测量结果(可以公开)用来检验贝尔不等式。通过检验贝尔不等式是否违反,可以发现通道是否安全可靠、没有窃听。然后可以用b90b67e4-f410-11ed-90ce-dac502259ad0.png,也就是

b91ba8e8-f410-11ed-90ce-dac502259ad0.png 方向的完美反关联的测量结果生成密钥。2006年,塞林格组在144公里距离上实现了这个方案[19]。他们检验CHSH不等式的S是2.508±0.037,表明贝尔不等式的违反达到13个标准偏差。2022年, 3个组用没有漏洞的贝尔测试实现了这个方案[20-22]。

作为密钥方案,也可以不检验贝尔不等式,而是独立去测量X或Z算符,结果应该是反关联的[23]。然后类似BB84方案,用一些结果作错误率分析,检验有无窃听。如果没有窃听,就可以生成密钥。这叫BBM92方案。2020年,墨子号卫星将纠缠光子分发到德令哈和南山(相距1120公里),实现了Ekert91和BBM92方案,而且违反Bell-CHSH不等式的S是2.56 ± 0.07,达到8个标准偏差 [24]。2022年,墨子号卫星将纠缠光子对分发到德令哈和丽江(相距1200km),然后在两个地面站之间实现了量子态远程传输[25]。

结束语

本篇文章详细梳理了量子纠缠相关的主要概念、关键思想和重要里程碑。从爱因斯坦-波多尔斯基-罗森,以及薛定谔、玻尔和玻姆的相关工作,少为人知的与粒子物理相关的量子纠缠研究,到贝尔不等式的提出和实验检验,再到量子信息时代中量子纠缠的重要角色。 爱因斯坦揭示了量子力学与定域实在论的冲突,贝尔将其定量化,CHSH将其推广用于实际实验。为了检验贝尔不等式,实验技术不断提高。2022年诺贝尔物理学奖授予阿兰•阿斯佩(Alain Aspect),约翰•克劳泽(John F. Clauser)和塞林格(Anton Zeilinger),奖励他们关于纠缠光子的实验,奠定了贝尔不等式的违反,也开创了量子信息科学。

他们的开创性实验使量子纠缠成为“有力的工具”,代表了量子革命的新阶段。 发展至今,这个曾经小众的领域生长出与量子调控和量子信息科技等密切相关的大领域。量子纠缠也是实现量子计算的基础,因为量子算法里普遍用到了量子纠缠态。因此量子纠缠在量子计算、量子模拟、量子通信、量子度量与传感等方面都扮演重要角色,是所谓新量子革命或者第二次量子革命和量子技术新纪元的基础。 另外,量子纠缠也是理解多体量子态的重要概念。本世纪初,一些研究人员意识到[26],量子纠缠概念除了在量子力学基本问题与量子信息之外,也可以用于传统的量子物理领域,比如凝聚态理论与量子场论。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 中继器
    +关注

    关注

    3

    文章

    425

    浏览量

    29473
  • 量子信息技术

    关注

    0

    文章

    5

    浏览量

    7311

原文标题:为什么量子纠缠是量子信息的资源?

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科学技术大学:实现纠缠增强纳米尺度单自旋量子传感

    中国科学技术大学与浙江大学合作,在纳米尺度量子精密测量领域取得进展,首次实现了噪声环境下纠缠增强的纳米尺度单自旋探测。 01 测量最基础的磁性单元 探测单个自旋,测量物质世界最基础的磁性单元,能够
    的头像 发表于 12-01 18:42 1382次阅读
    中国科学技术大学:实现<b class='flag-5'>纠缠</b>增强纳米尺度单自旋<b class='flag-5'>量子</b>传感

    新发现带来光量子计算的进步

    多光子干涉网络 由维也纳大学的菲利普-瓦尔特(Philip Walther)领导的国际研究人员合作,在量子技术领域取得了重大突破,利用一种新型资源节约型平台成功演示了多个单光子之间的量子干涉。这项
    的头像 发表于 12-01 07:38 15次阅读
    新发现带来光<b class='flag-5'>量子</b>计算的进步

    案例分享|PPLN在频率片编码的纠缠量子密钥分发中的应用

    简介:我们以前分享过《基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用》,探讨了PPLN在时间片QKD中的应用。时间-能量纠缠虽是PPLN最基础的产生形式,但也可以通过“加工”获得
    的头像 发表于 09-22 11:11 324次阅读
    案例分享|PPLN在频率片编码的<b class='flag-5'>纠缠</b><b class='flag-5'>量子</b>密钥分发中的应用

    案例分享 | 聚焦PPLN:1.48GHz通信波段纠缠光子源的技术创新与商业价值

    生成高速率的纠缠光子对的能力是量子密钥分发(QKD)和量子信息处理(QIP)系统的关键要求。QKD为安全社会提供了前景,包括保护关键信息、基
    的头像 发表于 06-26 11:18 2929次阅读
    案例分享 | 聚焦PPLN:1.48GHz通信波段<b class='flag-5'>纠缠</b>光子源的技术创新与商业价值

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    量子比特可同时处于0和1的叠加态,使量子计算机在处理并行问题时具备指数级加速潜力。量子纠缠,即多个量子比特间形成强关联,即使物理隔离,状态变
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    玻色量子重磅发布量子奇点计划

    2025年4月,玻色量子旗下开物量子开发者社区正式发起共筑量子计算应用新生态计划——“量子奇点计划”,计划集“量子应用创新基金+
    的头像 发表于 05-09 16:14 786次阅读

    抵御量子计算威胁:航芯「抗量子密码加密签名方案」为信息安全筑起新防线

    随着量子计算进入实用化突破期,传统密码体系面临的安全威胁已从理论风险升级为可预见的技术挑战。量子计算机强大的运算能力可能会破解现有的公钥密码体系,例如RSA和椭圆曲线加密算法(ECC)。为了应对量子
    的头像 发表于 04-14 11:01 837次阅读
    抵御<b class='flag-5'>量子</b>计算威胁:航芯「抗<b class='flag-5'>量子</b>密码加密签名方案」为<b class='flag-5'>信息</b>安全筑起新防线

    量子技术最新进展 首款高精度量子纠缠光学滤波器问世 还有量子计算机运行十亿级AI微调大模型

    给大家带来一些量子技术的最新消息,最前沿的科研进展。 首款高精度量子纠缠光学滤波器问世 据外媒报道,美国南加州大学团队在最新一期《科学》杂志上发表量子研究报告,介绍了他们开发的首个能隔
    的头像 发表于 04-08 16:04 1334次阅读

    基于玻色量子相干光量子计算机的混合量子经典计算架构

    近日,北京玻色量子科技有限公司(以下简称“玻色量子”)与北京师范大学、中国移动研究院组成的联合研究团队提出一种基于相干光量子计算机的混合量子-经典计算架构,结合
    的头像 发表于 03-10 15:43 927次阅读
    基于玻色<b class='flag-5'>量子</b>相干光<b class='flag-5'>量子</b>计算机的混合<b class='flag-5'>量子</b>经典计算架构

    量子处理器的作用_量子处理器的优缺点

    量子比特可以同时处于0和1的状态,这种量子叠加特性使得量子处理器能够同时处理大量信息。此外,量子比特之间的
    的头像 发表于 01-27 13:44 1503次阅读

    量子处理器是什么_量子处理器原理

    量子处理器(QPU)是量子计算机的核心部件,它利用量子力学原理进行高速数学和逻辑运算、存储及处理量子信息。以下是对
    的头像 发表于 01-27 11:53 1763次阅读

    玻色量子上线550量子比特云服务

    2025年1月,由北京玻色量子科技有限公司(简称“玻色量子”)自研的相干光量子计算云平台正式上线,可支持550计算量子比特云服务(以下简称“玻色量子
    的头像 发表于 01-13 09:11 1857次阅读

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠
    的头像 发表于 12-19 15:53 2107次阅读

    量子通信的基本原理 量子通信网络的构建

    比特(qubit)来表示,它是量子通信的基本单位。 2. 量子纠缠 量子纠缠量子通信的另一个关
    的头像 发表于 12-19 15:50 3532次阅读

    量子通信技术的应用 量子通信与传统通信的区别

    量子通信技术的应用 量子通信技术是一种前沿的通信技术,它基于量子力学原理,利用量子态进行信息传递。这种技术具有高度的安全性和独特的物理特性,
    的头像 发表于 12-19 15:45 2798次阅读