0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC MOSFET的设计挑战——如何平衡性能与可靠性

jf_69883107 来源:jf_69883107 作者:jf_69883107 2023-05-04 09:05 次阅读

碳化硅(SiC)的性能潜力是毋庸置疑的,但设计者必须掌握一个关键的挑战:确定哪种设计方法能够在其应用中取得最大的成功。

先进的器件设计都会非常关注导通电阻,将其作为特定技术的主要基准参数。然而,工程师们必须在主要性能指标(如电阻和开关损耗),与实际应用需考虑的其他因素(如足够的可靠性)之间找到适当的平衡。

优秀的器件应该允许一定的设计自由度,以便在不对工艺和版图进行重大改变的情况下适应各种工况的需要。然而,关键的性能指标仍然是尽可能低的比电阻,并结合其他重要的参数。图1显示了我们认为必不可少的几个标准,或许还可以增加更多。

wKgaomRR1IKADt3xAAOOb3rul84476.jpg

图1:SiC MOSFET的鲁棒性和制造稳定性(右)必须与性能参数(左)相平衡

元件在其目标应用的工作条件下的可靠性是最重要的验收标准之一。与已有的硅(Si)器件的主要区别是:SiC元件在更强的内部电场下工作。因此,设计者应该非常谨慎地分析相关机制。硅和碳化硅器件的共同点是,元件的总电阻是由从漏极和源极的一系列电阻的串联定义的。

这包括靠近接触孔的高掺杂区域电阻、沟道电阻、JFET(结型场效应晶体管)区域的电阻以及漂移区电阻(见图2)。请注意,在高压硅MOSFET(金属氧化物半导体场效应晶体管)中,漂移区阻显然在总电阻中占主导地位。而在碳化硅器件中,工程师可以使用具有更高电导率的漂移区,从而降低漂移区电阻的总比重。

wKgZomRR1IKAWxe9AALdxGBKv94514.jpg

图2:平面DMOS SiC MOSFET(左)和垂直沟槽TMOS SiC MOSFET的剖面图,以及与电阻有关的贡献的相应位置

设计者必须考虑到,MOSFET的关键部分——碳化硅外延与栅极氧化层(二氧化硅)之间的界面,与硅相比有以下差异:

SiC的单位面积的表面态密度比Si高,导致Si-和C-悬挂键的密度更高。靠近界面的栅极氧化层中的缺陷可能在带隙内出现,并成为电子的陷阱。

热生长氧化物的厚度在很大程度上取决于晶面。

与硅器件相比,SiC器件在阻断模式下的漏极诱导电场要高得多(MV而不是kV)。这就需要采取措施限制栅极氧化物中的电场,以保持氧化物在阻断阶段的可靠性。另见图3:对于TMOS(沟槽MOSFET),薄弱点是沟槽拐角,而对于DMOS(双扩散金属氧化物半导体),薄弱点是元胞的中心

与Si器件相比,SiC MOS结构在给定的电场下显示出更高的隧穿电流,因为势垒高度较低。因此,工程师必须限制界面上SiC一侧的电场。

上面提到的界面缺陷导致了非常低的沟道迁移率。因此,沟道对总导通电阻的贡献很大。所以,SiC相对于硅,因为非常低的漂移区电阻而获得的优势,被较高的沟道电阻削弱。

控制栅氧化层的电场强度

一个常用的降低沟道电阻的方法,是在导通状态下增加施加在栅氧化层上的电场——或者通过更高的栅源(VGS(on))偏压进行导通,或者使用相当薄的栅极氧化层。所应用的电场超过了通常用于硅基MOSFET器件的数值(4至5MV/cm,而硅中最大为3MV/cm)。在导通状态下,处于这种高电场的栅氧化层有可能加速老化,并限制了筛选外在氧化物缺陷的能力[1]。

wKgaomRR1IKASlwpAACJ9faG6aE014.jpg

图3

左图:平面MOSFET(半元胞)的典型结构。它显示了与氧化物场应力有关的两个敏感区域。

右图:沟槽式MOSFET(半元胞)的典型结构。这里的关键问题是沟槽边角的氧化层应力。

基于这些考虑,很明显,SiC中的平面MOSFET器件实际上有两个与氧化物场应力有关的敏感区域,如图3的左边部分所示。首先,在反向阻断模式下,漂移区和栅极氧化物界面存在高电场应力。其次,栅极和源极之间的重叠部分在导通状态下有应力。

在导通状态下的高电场被认为是更危险的,因为只要保证导通时的性能,就没有器件设计措施可以减少导通状态下的电场应力。找正品元器件,上唯样商城。我们的总体目标是在尽量减小SiC的RDS(on)的同时,保证栅极氧化层安全可靠。

因此,我们决定放弃DMOS技术,从一开始就专注于沟槽型器件。从具有高缺陷密度的晶面转向其他更有利的晶面方向,可以在低栅氧化层场强下实现低通道电阻。

我们开发了CoolSiC™ MOSFET元胞设计,以限制通态和断态时栅极氧化物中的电场(见图4)。同时,它为1200V级别提供了一个有吸引力的比导通电阻,即使在大规模生产中也能以稳定和可重复的方式实现。低导通电阻使得VGS(on)电压可以使用低至15V的偏压,同时有足够高的栅源-阈值电压,通常为4.5V。这些数值是SiC晶体管领域的基准。

该设计的特点包括通过自对准工艺将沟道定位在一个单一的晶面。这确保了最高的沟道迁移率,并缩小了阈值电压分布范围。另一个特点是深p型与实际的MOS沟槽在中心相交,以便允许窄的p+到p+间距尺寸,从而有效地屏蔽沟槽氧化层拐角。

总之,我们可以说,应用于我们的CoolSiC™器件的设计理念不仅提供了良好的导通电阻,而且还为大规模生产提供了可靠的制造工艺。

wKgZomRR1IOAWb7yAACu-k5AUYQ130.jpg


审核编辑:汤梓红


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    141

    文章

    6572

    浏览量

    210139
  • SiC
    SiC
    +关注

    关注

    27

    文章

    2439

    浏览量

    61405
  • 开关损耗
    +关注

    关注

    1

    文章

    59

    浏览量

    13417
收藏 人收藏

    评论

    相关推荐

    蓉矽半导体1200V SiC MOSFET通过车规级可靠性认证

    蓉矽半导体近日宣布,其自主研发的1200V 40mΩ SiC MOSFET产品NC1M120C40HT已顺利通过AEC-Q101车规级测试和HV-H3TRB加严可靠性考核。这一里程碑式的成就不仅彰显了蓉矽半导体在功率半导体领域的
    的头像 发表于 03-12 11:06 324次阅读

    瞻芯电子第二代650V SiC MOSFET产品通过车规级可靠性认证

    近日,瞻芯电子宣布其研发的三款第二代650V SiC MOSFET产品成功通过了严格的AEC-Q101车规级可靠性认证,这一里程碑式的成就标志着瞻芯电子在功率电子领域的持续创新与技术突破。
    的头像 发表于 03-12 11:04 328次阅读

    瞻芯电子开发的3款第二代650V SiC MOSFET通过了车规级可靠性认证

    3月8日,瞻芯电子开发的3款第二代650V SiC MOSFET产品通过了严格的车规级可靠性认证(AEC-Q101 Qualified)。
    的头像 发表于 03-11 09:24 369次阅读
    瞻芯电子开发的3款第二代650V <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>通过了车规级<b class='flag-5'>可靠性</b>认证

    瞻芯电子两款SiC MOSFET产品通过车规级可靠性认证

    Ω规格的IV2Q06060D7Z,均成功通过了严苛的车规级可靠性认证。这一认证标志着瞻芯电子的SiC MOSFET产品已经满足了汽车行业对高可靠性、高
    的头像 发表于 03-07 09:43 299次阅读

    3300V SiC MOSFET栅氧可靠性研究

    等大功率领域,能显著提高效率,降低装置体积。在这些应用领域中,对功率器件的可靠性要求很高,为此,针对自主研制的3300V SiC MOSFET 开展栅氧可靠性研究。首先,按照常规的评估
    的头像 发表于 01-04 09:41 857次阅读
    3300V <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>栅氧<b class='flag-5'>可靠性</b>研究

    提升SiC MOS器件性能可靠性的表面优化途径

    SiC MOSFET器件存在可靠性问题,成为产业发展瓶颈。
    的头像 发表于 12-12 09:33 411次阅读
    提升<b class='flag-5'>SiC</b> MOS器件<b class='flag-5'>性能</b><b class='flag-5'>可靠性</b>的表面优化途径

    1000h SiC MOSFET体二极管可靠性报告

    1000h SiC MOSFET体二极管可靠性报告
    的头像 发表于 12-05 14:34 250次阅读
    1000h <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>体二极管<b class='flag-5'>可靠性</b>报告

    SiC MOSFET AC BTI 可靠性研究

    SiC MOSFET AC BTI 可靠性研究
    的头像 发表于 11-30 15:56 473次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> AC BTI <b class='flag-5'>可靠性</b>研究

    增强型M1H CoolSiC MOSFET的技术解析及可靠性考量

    碳化硅MOSFET在材料与器件特性上不同于传统硅,如何保证性能可靠性平衡是所有厂家需要面对的首要问题,英飞凌作为业界为数不多的采用沟槽栅做SiCMOSFET的企业,如何使用创新的非
    的头像 发表于 11-28 08:13 441次阅读
    增强型M1H CoolSiC <b class='flag-5'>MOSFET</b>的技术解析及<b class='flag-5'>可靠性</b>考量

    提高PCB设备可靠性的技术措施

    提高PCB设备可靠性的技术措施:方案选择、电路设计、电路板设计、结构设计、元器件选用、制作工艺等多方面着手,具体措施如下: (1)简化方案设计。 方案设计时,在确保设备满足技术、性能指标的前提下
    发表于 11-22 06:29

    英飞凌如何控制基于SiC功率半导体器件的可靠性呢?

    英飞凌如何控制和保证基于 SiC 的功率半导体器件的可靠性
    的头像 发表于 10-11 09:35 756次阅读
    英飞凌如何控制基于<b class='flag-5'>SiC</b>功率半导体器件的<b class='flag-5'>可靠性</b>呢?

    面向SiC MOSFET的STGAP2SICSN隔离式单通道栅极驱动

    单通道STGAP2SiCSN栅极驱动器旨在优化SiC MOSFET的控制,采用节省空间的窄体SO-8封装,通过精确的PWM控制提供强大稳定的性能。随着SiC技术广泛应用于提高功率转换效
    发表于 09-05 07:32

    可耐受高温及振动的高可靠性性能与结构

    可耐受高温及振动的高可靠性性能与结构
    的头像 发表于 08-15 14:32 273次阅读
    可耐受高温及振动的高<b class='flag-5'>可靠性</b><b class='flag-5'>性能与</b>结构

    SiC MOSFET器件技术现状分析

    对于SiC功率MOSFET技术,报告指出,650-1700V SiC MOSFET技术快速迭代,单芯片电流可达200A。提升电流密度同时,解决好特有
    发表于 08-08 11:05 460次阅读

    SiC MOSFET的设计挑战——如何平衡性能与可靠性

    碳化硅(SiC)的性能潜力是毋庸置疑的,但设计者必须掌握一个关键的挑战:确定哪种设计方法能够在其应用中取得最大的成功。
    发表于 05-18 10:03 233次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的设计<b class='flag-5'>挑战</b>——如何<b class='flag-5'>平衡性能与</b><b class='flag-5'>可靠性</b>