0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

具有高电流能力且不可燃的质子有机电解质用于锌电池

锂电联盟会长 来源:新威NEWARE 2023-04-17 09:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

导读

可充电锌电池(RZBs)具有多种优势被认为是下一代电化学设备的有力竞争者。然而,由于水性体系中复杂的反应动力学,传统的水性电解质可能通过快速容量衰减和差的库仑效率(CE)对长期电池循环造成严重危害。

02

成果简介

该工作提出了采用质子酰胺溶剂N-甲基甲酰胺(NMF)作为锌电池电解质的新方法,其具有高介电常数和高闪点,同时促进快速动力学和电池安全性。在N-甲基甲酰胺(NMF)与三锌氟酸盐结合的(Zn-NMF)电解质中无枝晶和粒状锌沉积确保了在2.0 mA cm-2/2.0 mAh cm-2下2000 h的超长寿命、99.57 %的高CE、宽电化学窗口(3.43 V vs Zn2+/Zn)和高达10.0 mAh cm-2的容量。这项工作揭示了质子非水电解质的高效性能,这将为促进安全和高能量密度的RZBs提供新的机会。

03

关键创新

(1)作者首次将N-甲基甲酰胺(NMF)作为锌电池的电解质;

(2)使用Zn-NMF的锌电池实现了超长的循环寿命(2000 h,2.0 mA cm-2/2.0 mAh cm-2)、高面积容量(10.0 mAh cm-2)、高库伦效率(99.57 %)和宽电压窗口(3.43 V vs Zn2+/Zn)。

04

核心内容解读

ea25fd10-dcc0-11ed-bfe3-dac502259ad0.png

1 a-b)Zn||SS在Zn-NMF和水溶液(含Zn(OTf)2和硫酸锌盐)电解质中不对称电池组装得到的LSV曲线。在c)水溶液和d) Zn-NMF电解质的电流密度下,Zn||Zn对称电池在电流放电时的照片。e-f)有(左)和无(右)火源的NMF溶剂的易燃性试验。g)在不同电流密度下,在Zn-NMF电解质中循环的Zn||Zn对称电池的恒电流放电曲线。

Zn||SS(不锈钢)不对称电池的线性扫描伏安法(LSV),测定NMF溶剂和Zn-NMF电解质对锌金属电极的稳定性的影响。氧化过程中Zn-NMF电解质的分解受到了显著的抑制。循环过程中的光学图像表明,Zn-NMF电解质中没有H2的演化。此外,在图1e-f中还提供了对Zn-NMF电解质的火焰测试,显示了其不易燃的性质。

ea30e0ae-dcc0-11ed-bfe3-dac502259ad0.png

2 a-b)恒电流充放电曲线和c)Zn||Zn对称电池在不同电流密度下在Zn-NMF电解质中循环的倍率性能。

为了研究锌电极在Zn-NMF电解质中的电化学性能,作者进行了锌||锌对称电池的恒流充放电曲线测试。在高电流密度为3.0 mA cm-2和5.0 mA cm-2时,Zn-NMF电解质的锌||锌对称电池循环寿命分别为400 h和100 h。此外,在0.25~5.0 mA cm-2电流范围内,作者通过对称电池的倍率性能测试,比较了Zn-NMF和水溶液的稳定性。Zn-NMF的锌阳极稳定性更好。

ea3aee5a-dcc0-11ed-bfe3-dac502259ad0.png

3在电流密度为a-b) 0.5和c-d) 1.0 mA cm-2的情况下进行深度电镀/剥离,面积容量分别为5.0和10.0 mAh cm-2

作者采用深度电镀/剥离条件,确定了锌金属电极在高面积容量下与Zn-NMF电解质的相容性。在电流密度为0.5 mA cm-2/5.0 mAcm-2(图3a-b)和1.0 mA cm-2/10.0 mAcm-2(图3c-d)时,对称电池分别表现出~2000 h和1800 h的稳定循环,具有极低的过电位(~40 mV),没有任何电压滞后。

ea42ddae-dcc0-11ed-bfe3-dac502259ad0.png

4Zn-NMF与水电解质的a) CE比较。在b-d) Zn-NMF电解质和e-g)水电解质中循环后的锌电极的扫描电镜分析。两种电解质中锌阳极循环的h) XRD和i) XPS比较。

此外,作者通过不对称电池组装,测定了水和非水电解质中锌电镀/剥离的CE。锌在0.5 mA cm-2/0.5 mAh cm-2的条件下沉积在Ti电极上,然后以0.5 V的截止电压以电位控制的方式剥离。大约750个循环后,Zn-NMF电解液的高CE(~99.58%)表明锌阳极与Zn-NMF电解液具有较高的界面稳定性和非反应性。相反,在水电解质中,极低的CE(~68.69%)和较低的循环寿命表明水基体系中由于不可逆副产物的形成导致锌阳极不稳定和活性质量损失。作者通过扫描电镜对Zn-NMF电解质中沉积的锌进行了形态学测试,结果表明锌的致密、均匀和无枝晶沉积。

ea52359c-dcc0-11ed-bfe3-dac502259ad0.png

5 a)CV曲线,b)Zn||NMO全电池周期比较Zn-NMFMn-NMF电解质,c) Mn-NMF电解质的倍率性能,d)比较Mn-NMF和2 M ZnSO4+0.1 MnSO4(水)电解质的恒电流循环和e) Mn-NMF电解质在0.5 A g-1下长期的电池循环。

作者通过Zn||NMO全电池组装,研究了在Zn-NMF电解液中的电极性能。Zn2+离子(脱)嵌入是一种可逆的氧化还原过程,在整个CV循环过程中重叠,显示出Zn-NMF电解质中NMO电极的良好可逆性。在电流密度为0.1 A g-1时的Zn-NMF电解质中,Zn||NMO电池的恒流充放电曲线表明,在最初的活化过程中,最大比容量达到~112 mAh g-1。作者在Zn-NMF电解液中加入Mn2+盐(0.1 M氯化锰),以抑制活性物质的溶解。Zn-NMF+0.1 M氯化锰(Mn-NMF)电解质的稳定循环,比容量为110 mAh g-1,1000次循环后,容量保留率为98.2%。此外,在0.5 A g-1的高电流倍率下,Mn-NMF电解质中Zn||NMO的长期充放电试验显示出1000次循环的良好的循环稳定性,在第29个循环中,活化过程中的比容量从35.2增加到70.5 mAh g-1。此外,1000个循环后,容量保留为~94.4%,高CE为99.9%。

05

成果启示

该工作使用了一种新型电解质Zn-NMF。Zn||Zn对称电池在电流密度为0.5-2.0 mA cm-2的范围内进行了2000 h的超稳定循环。此外,实现了高效可逆的沉积(~99.57%),更宽的电化学窗口(~3.43 V vs Zn2+/Zn)和更大的面积容量(10.0 mAh cm-2)。该工作为设计高效的锌电池提供了新的策略和启发。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锌电池
    +关注

    关注

    0

    文章

    37

    浏览量

    8150
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21236

原文标题:Angew:具有高电流能力且不可燃的质子有机电解质用于锌电池

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MLPC的抗振性能如何与液态电解质电容比拟

    MLPC(固态叠层高分子电容)的抗振性能显著优于液态电解质电容 ,其核心优势体现在结构稳定性、材料特性及实际应用表现三方面,具体分析如下: 一、结构稳定性:无液态泄漏风险,振动下结构完整 固态电解质
    的头像 发表于 11-22 10:49 577次阅读
    MLPC的抗振性能如何与液态<b class='flag-5'>电解质</b>电容比拟

    巴西研究团队推进钠离子电池电解质计算研究

    圣卡洛斯化学研究所博士后研究员、论文通讯作者Tuanan da Costa Lourenço表示:“这项工作的主要目的是评估增加基于质子型离子液体的电解质及其含有非质子型离子液体的类似物中钠盐
    的头像 发表于 11-12 16:19 100次阅读
    巴西研究团队推进钠离子<b class='flag-5'>电池</b><b class='flag-5'>电解质</b>计算研究

    突破性固态聚合物电解质:像拼图一样组装分子,打造安全高压锂电池

    【美能锂电】观察:为比能锂金属电池开发安全且耐高压的固态聚合物电解质,是当前电池研究的重要方向。传统液态锂电池因易燃易爆的特性,给电动汽车
    的头像 发表于 09-30 18:04 2640次阅读
    突破性固态聚合物<b class='flag-5'>电解质</b>:像拼图一样组装分子,打造安全高压锂<b class='flag-5'>电池</b>

    共聚焦显微镜观测:电解质等离子抛光工艺后的TC4 钛合金三维轮廓表征

    抛光(PEP)工艺具有抛光效率、适用于复杂零件等优势,可有效改善表面质量。本文借助光子湾科技共聚焦显微镜等表征手段,研究电解质等离子抛光工艺对激光选区熔化成形T
    的头像 发表于 08-21 18:04 439次阅读
    共聚焦显微镜观测:<b class='flag-5'>电解质</b>等离子抛光工艺后的TC4 钛合金三维轮廓表征

    锂离子电池电解质填充工艺:技术原理与创新实践

    在锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应
    的头像 发表于 08-11 14:53 637次阅读
    锂离子<b class='flag-5'>电池</b><b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处锂沉积行为的影响

    清华新闻网2月7日电 硫化物固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率(≈10 mS/cm)、机械加工性能优异、与金属锂负极的化学兼容性良好等优点,是构建具有高能量密度
    的头像 发表于 02-14 14:49 734次阅读
    清华大学:自由空间对硫化物固态<b class='flag-5'>电解质</b>表面及内部裂纹处锂沉积行为的影响

    马里兰大学王春生教授团队最新研究成果:探索水系电池电解质设计

    ²⁺溶剂化壳层中水的还原引起,会生成氢气,加速Zn表面副反应;Zn沉积的非均匀性则易导致枝晶生长,进而损坏电极界面。 成果简介 基于此,马里兰大学王春生教授团队提出了一种基于 Et(30) 极性参数 的水系电池电解液优化策略,
    的头像 发表于 02-10 10:19 1201次阅读
    马里兰大学王春生教授团队最新研究成果:探索水系<b class='flag-5'>锌</b><b class='flag-5'>电池</b>的<b class='flag-5'>电解质</b>设计

    研究论文::乙烯碳酸酯助力聚合物电解质升级,提升高电压锂金属电池性能

    1、 导读 >>     该研究探讨了乙烯碳酸酯(VC)添加剂在聚丙烯酸酯(PEA)基固态聚合物电解质中的作用。结果表明,VC添加剂显著提升了电解质的锂离子电导率和迁移数,同时提高了锂金属负极和
    的头像 发表于 01-15 10:49 1287次阅读
    研究论文::乙烯碳酸酯助力聚合物<b class='flag-5'>电解质</b>升级,提升高电压锂金属<b class='flag-5'>电池</b>性能

    p-π共轭有机界面层助力钠金属电池稳定运行

    研究背景 由于天然丰度、电位适中、理论容量(1166 mAh g-1),钠金属负极被认为是有前途的下一代可充电池负极材料的有力候选者。然而,在传统有机电解液中形成的固体
    的头像 发表于 01-14 10:43 1168次阅读
    p-π共轭<b class='flag-5'>有机</b>界面层助力钠金属<b class='flag-5'>电池</b>稳定运行

    陈军院士团队最新Angew,聚合物电解质新突破

    研究背景 固态锂金属电池(SSLMBs)因其的能量密度和优异的安全性能在能源存储领域受到广泛关注。然而,现有固态电解质(SSEs)普遍存在离子传导性差、电极界面稳定性不足等问题,极大地限制了其实
    的头像 发表于 01-06 09:45 2100次阅读
    陈军院士团队最新Angew,聚合物<b class='flag-5'>电解质</b>新突破

    镁合金牺牲阳极与电解质接触不良的原因

    一、埋设深度不足 镁阳极的埋设深度决定了其与周围电解质的接触面积和接触质量。如果埋设深度不足,阳极可能与电解质的接触不良,导致保护电流分布不均,影响保护效果。特别是在地下水位较低或土壤干燥的区域
    的头像 发表于 01-02 21:00 526次阅读
    镁合金牺牲阳极与<b class='flag-5'>电解质</b>接触不良的原因

    Li3MX6全固态锂离子电池固体电解质材料

        研究背景 Li3MX6族卤化物(M = Y、In、Sc等,X =卤素)是新兴的全固态锂离子电池固体电解质材料。与现有的硫化物固体电解质相比,它们具有更高的化学稳定性和更宽的电化
    的头像 发表于 01-02 11:52 1816次阅读
    Li3MX6全固态锂离子<b class='flag-5'>电池</b>固体<b class='flag-5'>电解质</b>材料

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度锂金属电池安全性问题的有效途径。为了开发性能优异的全固态锂金属电池(ASSLMB),SSE通常需要具备均匀且
    的头像 发表于 12-31 11:21 1504次阅读
    一种薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于电压锂金属电池

    研究背景 基于镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在电压充电时,镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极与
    的头像 发表于 12-23 09:38 1733次阅读
    半互穿网络<b class='flag-5'>电解质</b><b class='flag-5'>用于</b><b class='flag-5'>高</b>电压锂金属<b class='flag-5'>电池</b>

    燃料电池的主要材料 燃料电池的效率和性能

    稳定性。 2. 电解质 电解质是燃料电池中传递离子的介质,它允许电子通过外部电路流动。常见的电解质材料包括: 质子交换膜(PEM) :如Na
    的头像 发表于 12-11 09:14 3216次阅读