根据制动执行机构的不同,线控制动系统(Brake-By-Wire)可以分为液压式线控制动系统(Electro-Hydraulic Brake, EHB)和机械式线控制动系统(Electro-Mechanical Brake, EMB)。其中,EHB 以传统的液压制动系统为基础,用电子器件替代了部分机械部件的功能,使用制动液作为动力传递媒介,同时具备液压备份制动系统,是目前的主流技术方案。而EHB根据集成度的高低,EHB 可以分为Two-box 和One-box 两种技术方案。 随着新能源汽车市场的扩张,“eBooster+ ESC”组合成为了目前市场上最主流的Two-box方案。该方案除了实现基础的制动助力功能和稳定性控制功能外,还能在实现制动能量回收的同时协调配合,保证在电制动和液压制动的切换中实现驾驶员的踏板感一致。 另一方面,线控制动也是支撑汽车走向更高级别自动驾驶的制动系统的必经之路。随着高阶辅助驾驶系统和自动驾驶系统(包括自主泊车)的普及,“eBooster+ ESC”作为当前市场上主流的制动冗余解决方案,有了更大的发挥舞台。
1.自动驾驶系统对制动系统的要求
自动驾驶汽车的核心是冗余设计,这是业界达成的共识。在SAE J3016对汽车自动驾驶分级标准基础上可以进行进一步归类:- 辅助驾驶汽车(包含Level1 / Level2)
- 自动驾驶汽车(包含Level3 / Level4 / Level5)
SAE J3016对汽车自动驾驶分级标准
辅助驾驶汽车和自动驾驶汽车最大的区别在于系统故障导致事故的责任方的不同:
- 对于辅助驾驶,当系统出现故障以后,只要正确向驾驶员报告了故障,接下来能否脱险全看驾驶员的水平,出了事故责任方在驾驶员,汽车厂家是没有责任的。
- 对于自动驾驶,系统在出现故障之后,需要系统来自己操作避免事故(自动驾驶等级越高,驾驶员可以越晚介入接管甚至是完全不用接管),出了事故是汽车厂家的责任而不是驾驶员的责任。
| 冗余系统要素 | 原因 |
| 供电系统冗余 | 当单一链路出现信号中断,系统可实现信息的无缝安全衔接 |
| 通讯冗余 | 主电源失效后,备份电源能够支撑ECU完成安全降级动作 |
| 感知冗余 | 多传感器数据融合技术可以保证车辆行驶构成中精准实现物体及行人的识别,从而支持车辆时刻做出正确的控制行为 |
| 上层决策系统冗余 | 两个大脑互相监督、互为备份,主大脑故障发生时,备份大脑及时接管 |
| 制动冗余 | 主制动系统失效后,备份系统依然提供一定的制动能力来维持制动控制及制动稳定性控制 |
| 转向冗余 | 如果故障发生后的安全状态定义为继续运行而不是刹停,那么当一路转向系统故障后,备份系统需要能够支持车辆完成接下来的运行场景中的转弯工况 |
HAD系统制动冗余E/E架构示意图,图片来自网络
除了高速自动驾驶,自主泊车技术也是国内外汽车生产厂商不断研究的对象,且遥控泊车(RPA, Remote Parking Control)和自主代客泊车(AVP, Automated Valet Parking)相继落地。RPA允许驾驶员下车并通过遥控(车钥匙或手机APP)激活,整个泊车过程完全由系统自主完成,不过一般仍然要求驾驶员在车辆距离车辆一定范围内(欧盟法规ECE-R 79要求半径不超过6m)。AVP则被认为是解决用户“最后一公里自由”痛点的最优技术方案,简单来讲AVP提供以下两大功能,完全满足了大众对自主泊车的终极想象:
从实现方式上来看,各个厂家的RPA和AVP方案千差万别,呈现出多样化的态势,但是如果单看对泊车过程的应急处理的方式,大家又都殊途同归,无一例外地执行紧急刹车。这一处理方式对泊车场景来说合理且易于实现,因为RPA和AVP最大运行速度不超过15kph,快速刹停车辆能够避免碰撞事故或者将碰撞速度降到很低从而降低碰撞伤害。
这样一来,RPA和AVP对冗余的要求相对高速自动驾驶要低一些,但是制动冗余仍然是不可或缺的。
| 冗余系统要素 | RPA/AVP是否需要? | 原因 |
| 制动控制冗余 | 强制 | 当一路制动系统失效时需要另一路接管 |
| 供电系统冗余 | 强制 | 两个制动系统共用一套供电存在共因失效 |
| 通讯冗余 | 不必要 | 主制动系统或备份制动系统任何收不到通讯信息都可以执行紧急刹停,两路制动力叠加没有风险 |
| 上层决策系统冗余 | 不必要 | 上层系统故障,主制动系统可以直接紧急刹停 |
RPA/AVP系统制动冗余E/E架构示意图,图片来自网络2.ESC+eBooster制动冗余方案介绍
前文已经介绍,在自动驾驶之前,市场上就有很多新能源车型同时搭载ESC和eBooster系统,目的是使用eBooster实现更佳的回收性能。ESC和eBooster在车上共用一套液压系统,两者协调工作。 因此,不同于自动驾驶系统(HAD/RPA/AVP)中其他冗余系统的设计,制动冗余无需额外增加电控产品,只要在现有的ESC和eBooster基础上稍加改动即可,既简洁又省钱。也正因为如此, ESC和eBooster成为了目前市场上支持自动驾驶的冗余制动方案的黄金组合,广泛运用于主流智能驾驶车型上,如Tesla全系、蔚来ES8、小鹏P7、理想ONE、长安UN-T、长城摩卡以及极氪001等。 自动驾驶要求制动系统除了有当前制动系统的正常状态下的能力之外, 还要有故障快速侦测能力、执行机构的自检能力、故障发生时执行机构的快速选择能力,要求车辆具有纵向稳定性冗余、可转向性(防抱死)冗余,还有车辆的减速冗余。这就需要车辆有两套制动系统,具有额外的监控功能,冗余的模式控制和纵向稳定性控制。 基于eBooster和ESC系统组合开发的支持自动驾驶的冗余制动系统,ESC和eBooster分别连接一套相互独立的供电系统,且冗余上层控制单元分别控制ESC和eBooster。
ESC+eBooster制动冗余系统E/E架构示意图,图片来自网络
ESC和eBooster均能在整个减速范围内独立的对车辆进行制动。考虑到eBooster建压的动态响应速度比ESC主动建压更快,且NVH表现更好,因此eBooster是冗余制动系统中的主执行机构。这对黄金组合的控制和接管策略可以总结如下(策略不唯一,根据上层控制单元的控制策略可能有调整):
| 场景 | 制动执行控制器 |
| 无故障 | eBooster |
| 上层主控制单元故障 | ESC |
| 上层备份控制单元故障 | eBooster |
| 主网络故障 | ESC |
| 备份网络故障 | eBooster |
| ESC故障 | eBooster |
| eBooster故障 | ESC |
| 场景 | 稳定性功能执行单元 |
| 无故障 | ESC: fullABS (基于四个轮速传感器单轮控制) |
| eBooster故障 | ESC: fullABS (基于四个轮速传感器单轮控制) |
| ESC单个轮速故障 | ESC: ABS degraded(基于三个轮速传感器单轮控制) |
| ESC两个及两个以上轮速故障 | eBooster:SBS (基于四个轮速传感器单轴控制) |
博世ESC+eBooster制动纵向稳定性冗余方案示意图,来自网络
审核编辑 :李倩
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
新能源汽车
+关注
关注
141文章
11262浏览量
104607 -
制动系统
+关注
关注
0文章
144浏览量
16283 -
自动驾驶
+关注
关注
791文章
14667浏览量
176400
原文标题:智能底盘技术(16)| Two-box方案‘ESC+eBooster’在自动驾驶中的应用
文章出处:【微信号:阿宝1990,微信公众号:阿宝1990】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
热点推荐
高程数据在自动驾驶中有什么作用?
最近有小伙伴让智驾最前沿聊聊自动驾驶高精度地图对高程数据的使用依赖,其实在聊这个话题之前,还是需要先知道高程数据是什么,在自动驾驶中到底有什么作用。
如何确保自动驾驶汽车感知的准确性?
[首发于智驾最前沿微信公众号]自动驾驶汽车想要自动驾驶,首先要做的就是能对周边环境实现精准感知,也就是能“看”清道路,那自动驾驶汽车如何在复杂、快速变化的道路环境中做到感知的精确又可靠
太阳光模拟器 | 在汽车自动驾驶开发中的应用
在汽车产业向电动化、智能化转型的浪潮中,自动驾驶技术的研发面临着复杂环境感知的挑战。光照条件作为影响传感器性能的关键因素,直接关系到自动驾驶系统的安全性和可靠性。紫创测控Luminbo
低速自动驾驶与乘用车自动驾驶在技术要求上有何不同?
[首发于智驾最前沿微信公众号]自动驾驶技术的发展正朝着多元化方向迈进,其中低速自动驾驶小车(以下简称“低速小车”)因其在物流配送、园区运维、社区服务等场景中的独特价值而受到广泛关注,且
卡车、矿车的自动驾驶和乘用车的自动驾驶在技术要求上有何不同?
[首发于智驾最前沿微信公众号]自动驾驶技术的发展,让组合辅助驾驶得到大量应用,但现在对于自动驾驶技术的宣传,普遍是在乘用车领域,而对于卡车、矿车的自
自动驾驶安全基石:ODD
和限制下可以正常工作,是自动驾驶安全的核心概念之一。 对于人类司机来说,在不同的道路上驾驶的能力也有所区别,比如新手司机在一些窄路、山路,或者交通状况复杂的道路上可能会无所适从,人
激光雷达在自动驾驶领域中的优势
在自动驾驶系统中,激光雷达起到了至关重要的作用,它是实现高度自动驾驶的关键传感器之一。激光雷达通过发射和接收多束脉冲信号,通过测量ToF(Time of Flight,飞行时间),从而
新能源车软件单元测试深度解析:自动驾驶系统视角
的潜在风险增加,尤其是在自动驾驶等安全关键系统中。根据ISO 26262标准,自动驾驶系统的安全完整性等级(ASIL-D)要求单点故障率必须低于10^-8/小时,这意味着每小时的故障概
发表于 05-12 15:59
自动驾驶大模型中常提的Token是个啥?对自动驾驶有何影响?
近年来,人工智能技术迅速发展,大规模深度学习模型(即大模型)在自然语言处理、计算机视觉、语音识别以及自动驾驶等多个领域取得了突破性进展。自动驾驶作为未来智能交通的重要方向,其核心技术之一便是对海量
NVIDIA Halos自动驾驶汽车安全系统发布
自动驾驶汽车的开发。正确的技术与框架对确保自动驾驶汽车驾驶员、乘客和行人的安全至关重要。 因此,NVIDIA 推出了NVIDIA Halos综合安全系统,将 NVIDIA 的汽车硬件、软件安全解决
沃尔沃与Waabi携手开发自动驾驶卡车
沃尔沃自动驾驶解决方案公司(V.A.S.)近日宣布与加拿大自动驾驶卡车技术公司Waabi建立合作伙伴关系,共同致力于自动驾驶卡车解决方案的研
光庭信息自动驾驶系统亮相CES 2025
自动驾驶的魅力在于将人类从繁琐的驾驶任务中解放出来,随着 AI 大模型和大数据技术的突破,自动驾驶技术的发展及实际应用也成为 CES 2025 的重头戏之一。展会上,光庭信息自主研发的
从《自动驾驶地图数据规范》聊高精地图在自动驾驶中的重要性
自动驾驶地图作为L3级及以上自动驾驶技术的核心基础设施,其重要性随着智能驾驶技术的发展愈发显著。《自动驾驶地图数据规范》(DB11/T 2041-2022)由北京市规划和自然资源委员会

Two-box方案‘ESC+eBooster’在自动驾驶中的应用
评论