0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OBC 充电器中的 SiC FET

郭大 来源:Mike Zhu 作者:Mike Zhu 2022-12-28 09:51 次阅读

小封装带来好东西:OBC 充电器中的 SiC FET

pYYBAGOrmZCAXTD3AAIXuJ-BLTo027.jpg

(来源:Qorvo

介绍

碳化硅 (SiC) MOSFET 正在稳固地确立自己作为 22kW 及更高功率级别电动汽车 (EV) 车载充电器所有阶段半导体开关的竞争者地位。UnitedSiC(现为 Qorvo)SiC FET 具有独特的 Si MOSFET 和 SiC JFET 级联结构,效率优于 IGBT,并且比超结 MOSFET 更具吸引力。不过,这不仅仅是关于整个转换器系统的损耗。成本、尺寸和重量也是对 EV 所有者重要的重要因素。

设计人员可以为 EV 车载充电器中的半导体功率开关选择不同的封装样式,包括在使用 SiC FET 时可以达到数十 kW 的表面贴装变体。在此博客中,我们将查看一些 SiC FET 性能数据。

OBC 充电器中的 SiC FET

在 EV 的典型功率水平下,即使效率超过 98%,车载充电器仍然需要在炎热环境中从一个小外壳中耗散数百瓦特。因此,需要散热,通常采用液体冷却。一个主要的设计考虑是开关如何连接到这种散热布置以实现最佳热传递、产量可靠性和低组装成本。在 TO-247-4L 封装中发现SiC FET很常见,该封装提供出色的热性能,使用UnitedSiC从结点到冷却液的热性能约为 1.0°C/W(现为 Qorvo)的晶圆减薄技术,采用银烧结芯片和陶瓷隔离垫。然而,TO-247-4L 封装的缺点是需要机械固定和通孔焊接。它还具有显着的封装电感,并且其引脚之间的爬电距离和间隙有限。此外,封装在 PCB 焊盘之间的距离更小,除非以复杂且昂贵的方式“接合”引线。

表面贴装替代方案似乎很有吸引力,但在 22kW 级别?实际上,是的,它可以与UnitedSiC(现为 Qorvo)D2PAK-7L设备一起使用,对性能影响很小或没有影响,具体取决于所考虑的电源转换阶段。查看下表 1中封装样式之间的主要差异,D2PAK-7L 胜出,芯片焊盘尺寸除外,这导致 18 毫欧姆键合器件的整体结至冷却液热阻约为 1.3°C/W绝缘金属基板,比 TO-247-4L 封装高约 30%。

表 1:D2PAK-7L 和 TO-247-4L 之间的比较(来源:Qorvo)

pYYBAGOrmZKARWGCAAALmZss7Pk175.png

较高热阻的实际效果是,对于给定的耗散功率,结温度较高,所有情况都相同,但由于SMT器件节省了大量的组装成本,可能可以使用较低电阻的部件,从而降低温度。然而,如果仅使用一个SMT器件达到热极限,则Tj变得过高,并联SMT器件是可行的解决方案。如果使用两个并联的SMT器件来替换一个SMT器件,则与仅使用一个SMT设备相比,两个并联SMT器件中的每一个应具有两倍的导通电阻。在这种情况下,每个部件中的电流减半,但每个部件的导通电阻加倍,因此耗散是单个部件的一半。与仅使用一个具有一半导通电阻的SMT器件相比,两个并联SMT器件的总功耗将略低。在热方面,每个器件都会更冷,因为对于相同的热管理(从结到环境或冷却剂的热阻),每个并联器件只消耗单个SMT器件一半的损耗。因此,理论上,每个并联SMT器件从环境或冷却剂到结的温度升高也应该是单个SMT器件的一半。除此之外,D2PAK-7L的较低封装电感可能允许更快的开关边缘速率,甚至更低的动态损耗。

使用 UnitedSiC 在线 FET-Jet Calculator ™查看典型车载充电器不同阶段的封装性能比较示例非常有用。“图腾柱 PFC”级很常见,一个额定功率为 6.6kW、400V 输出、75kHz、连续导通模式 (CCM) 的示例使用一系列 TO-247-4L 和 D2PAK-7L SiC FET 进行了评估,以实现“快速”开关'腿,散热器/流体温度为 80°C。两种封装之间的结温差范围为 3°C 至 8°C,具体取决于导通电阻的等级。

在更高功率和三相交流电源下,“维也纳整流器”可能与 800V 直流链路一起使用,例如 40kHz(图 1)。可以使用750V SiC FET,如果再次比较 18 毫欧 TO-247-4L 和 D2PAK-7L 部件,结温差异仅为 3°C,“半导体”效率差异为 0.1%。此应用中的导通电阻较高的部件不可避免地会显示出较大的差异,单个设备的温升无法正常工作,但在高价值产品中为 22kW,较低电阻部件的成本对于获得的好处而言并不是很大的开销。

poYBAGOrmZSAURfCAAEynkwcU4U266.jpg

图 1:该图展示了 Vienna 整流器前端。(来源:Qorvo)

D2PAK-7L 可有效替代 DC/DC 级中的 TO-247-4L

刚刚考虑的图腾柱 PFC 和 Vienna 整流器级是“硬”开关,频率保持相对较低以最大限度地减少动态损耗。OBC 中的 DC/DC 级可以是谐振或“软”开关转换器,例如 CLLC 拓扑,具有更高的频率以实现小磁性和低损耗,通常为 300kHz。例如,在 6.6kW 和 400V 直流链路并使用 18 毫欧 SiC FETS 时,根据 FET-Jet Calculator™,TO-247-4L 和 D2PAK-7L 的损耗分别为 4.1W 和 4.2W,而SMT 封装的较低电感使其成为使用更高频率的自然选择。

从 TO-247-4L 类型转向 SMT D2PAK-7L 封装是一种自然的发展,当考虑总系统成本时温升或系统效率差异很小或没有差异时,尤其是考虑到并联的电气和机械便利性时。 SMT 器件及其一流的品质因数 (FoM) 和简单的栅极驱动,SiC FET 正逐渐成为 EV 车载充电器应用的理想开关选择。

结论

凭借标准的 1700V 额定值和比 IGBT 更高的效率,SiC FET 正变得比超级结 MOSFET 更具吸引力,在 EV 车载充电的所有阶段稳固地成为竞争者。虽然 TO-247-4L 封装中的 SiC FET 具有出色的热性能,但缺点是它们需要机械固定和通孔焊接。因此,当考虑总系统成本且对温升或效率的影响最小或没有影响时,迁移到 UnitedSiC D2PAK-7L 封装等 SMT 器件是一种自然演变。这些 SMT SiC FET 不仅为设计人员显着节省电路组装成本,而且还提供一流的 FoM 和简单的栅极驱动解决方案,使其成为 EV 车载充电器的理想开关选择。

作者

Mike Zhu 是 UnitedSiC Inc(现为 Qorvo)的应用工程师。他于 2013 年获得重庆大学电气工程学士学位,2015 年获得俄亥俄州立大学电气与计算机工程硕士学位,此后加入 UnitedSiC。他在SiC和GaN器件评估、高频、高效率和高功率密度电力电子设计以及WBG器件的EMI解决方案方面有9年的研究经验。

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 充电器
    +关注

    关注

    99

    文章

    3857

    浏览量

    111710
  • FET
    FET
    +关注

    关注

    3

    文章

    586

    浏览量

    62365
  • SiC
    SiC
    +关注

    关注

    28

    文章

    2444

    浏览量

    61417
  • OBC
    OBC
    +关注

    关注

    10

    文章

    135

    浏览量

    17550
收藏 人收藏

    评论

    相关推荐

    三相车载充电器OBC) PFC-LLC平台SEC-3PH-11-OBC-EVB数据手册

    电子发烧友网站提供《三相车载充电器OBC) PFC-LLC平台SEC-3PH-11-OBC-EVB数据手册.rar》资料免费下载
    发表于 04-23 16:40 0次下载
    三相车载<b class='flag-5'>充电器</b>(<b class='flag-5'>OBC</b>) PFC-LLC平台SEC-3PH-11-<b class='flag-5'>OBC</b>-EVB数据手册

    三相车载充电器OBC) PFC-LLC 平台评估套件

    电子发烧友网站提供《三相车载充电器OBC) PFC-LLC 平台评估套件》资料免费下载
    发表于 04-12 17:06 0次下载

    vivo氮化镓充电器和普通充电器区别

    Vivo是一家知名的中国智能手机制造商,其氮化镓充电器和普通充电器之间存在许多区别。本文章将介绍这些区别,内容将包括充电器的工作原理、快速充电能力、安全性、兼容性和设计等方面。 首先,
    的头像 发表于 01-10 10:32 869次阅读

    苹果氮化镓充电器和普通充电器区别

    苹果氮化镓充电器是一种新型的充电器,它采用了氮化镓材料来实现高效、节能的充电功能。与普通充电器相比,苹果氮化镓充电器在多个方面表现出了明显的
    的头像 发表于 01-10 10:30 1213次阅读

    小米氮化镓充电器和普通充电器区别

    小米氮化镓充电器是一种新型充电器,它与传统的普通充电器在多个方面有所不同。在这篇文章中将详细讨论小米氮化镓充电器与普通充电器之间的区别。 首
    的头像 发表于 01-10 10:28 1778次阅读

    氮化镓充电器好还是原装充电器

    氮化镓充电器和原装充电器是两种不同类型的充电器,它们的特点和优点都有所不同。要判断哪种更好,需要从不同的角度进行比较和分析。 首先,从充电效率方面来看。氮化镓
    的头像 发表于 01-09 16:01 3074次阅读

    倍思氮化镓充电器怎么样

    倍思氮化镓充电器是一款优秀的充电器,具有高效、快速、安全、环保等优点。下面我们将详细介绍倍思氮化镓充电器的优缺点、使用体验和与其他产品的比较,帮助您更好地了解这款充电器。 一、倍思氮化
    的头像 发表于 11-24 11:18 696次阅读

    氮化镓充电器和普通充电器的区别

    氮化镓充电器和普通充电器是两种不同的充电设备,它们在充电速度、充电效率、体积大小、重量、安全性能等方面存在一些差异。下面我们将详细介绍氮化镓
    的头像 发表于 11-24 11:00 6827次阅读

    氮化镓充电器伤电池吗?氮化镓充电器怎么选?

    氮化镓充电器伤电池吗?氮化镓充电器怎么选? 氮化镓(GaN)充电器被广泛认为是下一代充电器技术的关键。与传统充电器相比,氮化镓
    的头像 发表于 11-21 16:15 2136次阅读

    氮化镓充电器的优点?氮化镓充电器和普通充电器的区别?

    氮化镓充电器什么意思?氮化镓充电器的优点?氮化镓充电器和普通充电器的区别是什么? 氮化镓充电器是一种使用氮化镓(GaN)材料制造的
    的头像 发表于 11-21 16:15 1277次阅读

    基于意法半导体 STDES-7KWOBC 的7 KW车载充电器OBC)解决方案

    ST意法半导体的STDES-7KWOBC是一款车载充电器OBC)解决方案,可透过家用交流电源插头或公共插座(交流充电站)为电动汽车(EV)的电池充电。解决方案嵌入了两个部分:带
    的头像 发表于 10-10 17:11 1049次阅读
    基于意法半导体 STDES-7KWOBC 的7 KW车载<b class='flag-5'>充电器</b> (<b class='flag-5'>OBC</b>)解决方案

    手机充电器原理是什么?手机充电器有用吗?

    手机充电器原理是什么?手机充电器有用吗? 手机充电器,作为手机生活中不可或缺的小配件,一般用于给移动设备充电。不少人可能觉得它的原理很简单,甚至认为只要接上电源,
    的头像 发表于 09-26 17:30 2944次阅读

    用于车载充电器应用的1200V SiC MOSFET模块使用指南

    随着电动汽车的车载充电器 (OBC) 迅速向更高功率和更高开关频率发展,对 SiC MOSFET 的需求也在增长。许多高压分立 SiC MOSFET 已经上市,工程师也在利用它们的性能
    的头像 发表于 06-08 15:40 751次阅读
    用于车载<b class='flag-5'>充电器</b>应用的1200V <b class='flag-5'>SiC</b> MOSFET模块使用指南

    车载充电器怎么使用

    车载充电器怎么使用 车载充电器的使用方法:1、准备车载充电器,车载充电器底部是正极,两边的触点是负极; 2、将车载充电器底部直接插到点烟器里
    发表于 06-01 14:11 1375次阅读

    在单向车载充电器中使用碳化硅进行设计

    EV 车载充电器OBC) 使 EV 能够在任何有交流电源的地方充电。根据功率水平和功能,它可以采取多种形式。充电功率从电动滑板车等应用中的不到 2 kW 到高端 EV 的 22 k
    的头像 发表于 05-20 15:23 716次阅读
    在单向车载<b class='flag-5'>充电器</b>中使用碳化硅进行设计