0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

功率密度权衡——开关频率与热性能

Robot Vision 来源:电子发烧友网原创 作者:李宁远 2022-12-26 09:30 次阅读
电子发烧友网报道(文/李宁远)电源模块功率密度越来越高是行业趋势,每一次技术的进步都可以让电源模块尺寸减小或者让功率输出能力提高。随着技术的不断发展,电源模块的尺寸会越来越小。功率密度不断提高的好处也显而易见,更少的组件,更高的集成度以及更低的成本。

更高的功率密度和温度

功率密度是在给定空间内可处理多少功率的度量,基于转换器的额定功率以及电源组件的体积计算得出。电流密度也是一种与功率密度有关的指标,转换器的额定电流可用于计算电流密度,量化为单位体积的电流。电流密度通常更适合应用于负载点稳压器等应用的常见品质因数,因为它可以排除输出电压的影响。

体积密度则和电路板面积息息相关,电路板面积是影响功率密度的几个关键因素之一,提高功率密度需要找到堆叠或3D 集成组件的方法,以减少功率解决方案的空间占用。半导体电源高性能、高能效的关键是实现更高水平的功率密度,也就是能在更小的体积中提供更高的功率处理能力。但更高的功率密度也会在较小的体积中产生更多热量,这就需要先进的热管理技术来维持性能和保护元件。

从电网到通信设备,从电动汽车到个人电子产品,各类电子系统都需要由密度更大、热效率更高的电源芯片提供更高的性能和效率。

优化功率密度——开关频率与损耗

开关频率和损耗是限制功率密度的因素之一,这一参数具有两面性。增加开关频率的确可以提高功率密度,但频率的增加也会使损耗随之增加,并可能引起温升。

以同步降压转换器为例,同步降压转换器是当今低压调节器中最流行的拓扑结构之一。随着单个处理器中晶体管计数的不断增加,低压、大电流电压调节器的设计出现了各种挑战。同步降压转换器的功率损耗包括以下几个部分,MOSFET损耗、电感损耗、印刷电路板PCB损耗等,其中又以MOSFET损耗最为复杂。

同步降压变换器中与MOSFET相关的功率损耗由导电损耗和开关损耗组成。传导损耗是高侧(HS)和低侧(LS)FETs传导损失的总和。这种损耗与开关频率无关。可以通过减少MOSFET的导通状态电阻来降低传导损耗。然而,减少导通状态电阻也将导致与器件开关相关的损耗增加,并增加裸片总面积和成本。

开关损耗则包括HS FET管开关损耗、LS FET开关损耗、栅极驱动损耗、LS二极管损耗和FET管输出电容损耗,开关损耗随开关频率的增加呈线性增加。MOSFET开关损耗由过渡时间决定,并受到栅极驱动回路中的几个参数的影响。共源电感(CSI)是其中最重要的参数之一。根据不同的应用,不同的开关损耗对总体功率损耗的影响会有所不同,必须慎重地控制开关速度。

优化功率密度——热性能

器件中的任何电阻都会拉低效率,既浪费了电力又产生了额外的热量。从封装角度来说,散热效果越好,通常可以承受的功率损耗就越多不会出现温升现象。比如QFN封装就有一个大面积裸露焊盘用来导热,这种封装设计提供了以前认为不可能的大接地焊盘,从而在器件到印刷电路板之间形成了良好的散热路径,可以高效地将热量从芯片转移到电路板上去。晶圆芯片级封装WCSP也能将大部分热量直接从凸块传导出去,在越来越小的封装尺寸下实现预期的热性能。

为进一步减少产生额外热量的功率损耗,很多厂商会将FET、电容器等多种元件直接集成到电源芯片中。这种集成可以让开关速度变得更快且更高效,在实现高电流密度的同时提供更出色的热性能。还可以在芯片上进行元件三维堆叠,实现更高的集成度。

小结

这只是如何突破功率密度瓶颈几个途径,提高功率密度从来不是将几种办法孤立拼凑在一起,而是需要全盘考虑互相权衡。总之要在更小的空间内实现更大的功率,还是离不开先进的工艺、封装和电路设计技术。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源模块
    +关注

    关注

    32

    文章

    1511

    浏览量

    91666
  • 开关频率
    +关注

    关注

    2

    文章

    79

    浏览量

    20932
收藏 人收藏

    评论

    相关推荐

    如何实现高功率密度三相全桥SiC功率模块设计与开发呢?

    为满足快速发展的电动汽车行业对高功率密度 SiC 功率模块的需求,进行了 1 200 V/500 A 高功率密度三相 全桥 SiC 功率模块设计与开发,提出了一种基于多叠层直接键合铜单
    的头像 发表于 03-13 10:34 564次阅读
    如何实现高<b class='flag-5'>功率密度</b>三相全桥SiC<b class='flag-5'>功率</b>模块设计与开发呢?

    激光功率密度计算公式

      在处理激光光学时,功率和能量密度是需要理解的两个重要概念。这两个术语经常互换使用,但含义不同。表1定义了与激光光学相关的功率密度、能量密度和其他相关术语。 表1:用于描述激光束和其
    的头像 发表于 03-05 06:30 482次阅读
    激光<b class='flag-5'>功率密度</b>计算公式

    功率设备提升功率密度的方法

    在电力电子系统的设计和优化中,功率密度是一个不容忽视的指标。它直接关系到设备的体积、效率以及成本。以下提供四种提高电力电子设备功率密度的有效途径。
    的头像 发表于 12-21 16:38 416次阅读
    <b class='flag-5'>功率</b>设备提升<b class='flag-5'>功率密度</b>的方法

    功率半导体冷知识:功率器件的功率密度

    功率半导体冷知识:功率器件的功率密度
    的头像 发表于 12-05 17:06 373次阅读
    <b class='flag-5'>功率</b>半导体冷知识:<b class='flag-5'>功率</b>器件的<b class='flag-5'>功率密度</b>

    采用IGBT7高功率密度变频器的设计实例

    采用IGBT7高功率密度变频器的设计实例
    的头像 发表于 12-05 15:06 536次阅读
    采用IGBT7高<b class='flag-5'>功率密度</b>变频器的设计实例

    使用集成 GaN 解决方案提高功率密度

    使用集成 GaN 解决方案提高功率密度
    的头像 发表于 12-01 16:35 219次阅读
    使用集成 GaN 解决方案提高<b class='flag-5'>功率密度</b>

    提高4.5kV IGBT模块的功率密度

    提高4.5kV IGBT模块的功率密度
    的头像 发表于 11-23 15:53 350次阅读
    提高4.5kV IGBT模块的<b class='flag-5'>功率密度</b>

    非互补有源钳位可实现超高功率密度反激式电源设计

    非互补有源钳位可实现超高功率密度反激式电源设计
    的头像 发表于 11-23 09:08 326次阅读
    非互补有源钳位可实现超高<b class='flag-5'>功率密度</b>反激式电源设计

    影响电源模块功率密度的关键因素

    依靠简单的经验法则来评估电源模块密度的关键因素是远远不够的,例如电源解决方案开关频率与整体尺寸和密度成反比;与驱动系统密度的负载相比,
    发表于 08-18 11:36 284次阅读

    GaN功率IC实现4倍功率密度150W AC/DC转换器设计

    GaN功率IC使能4倍功率密度150W AC/DC变换器设计
    发表于 06-21 07:35

    基于GaN电源集成电路的超高效率、高功率密度140W PD3.1 AC-DC适配器

    功率密度本设计实现35W/in3功率密度,满载94.5%效率@ 90Vac,并通过CE和RE标准足够的保证金。
    发表于 06-16 09:04

    基于GaN器件的电动汽车高频高功率密度2合1双向OBCM设计

    基于GaN器件的产品设计可以提高开关频率,减小体积无源器件,进一步优化产品功率密度和成本。然而,由于小GaN器件的芯片尺寸和快速开关特性,给散热带来了一系列新的挑战耗散设计、驱动设计和
    发表于 06-16 08:59

    一种超高效率和高功率密度的PFC和AHB反激变换器140w PD3.1适配器应用程序

    本文提出了一种超高效率、高功率密度功率因数设计校正(PFC)和非对称半桥(AHB)反激变换器140w PD3.1适配器应用程序。在升压PFC设计中,采用了GaNSense功率ic,以实现更高的
    发表于 06-16 08:06

    如何提高系统功率密度

    功率器件领域,除了围绕传统硅器件本身做文章外,材料的创新有时也会带来巨大的性能提升。比如,在谈论功率密度时,GaN(氮化镓)凭借零反向复原、低输出电荷和高电压转换率等突出优势,能够帮助厂商大幅提升系统
    的头像 发表于 05-18 10:56 810次阅读
    如何提高系统<b class='flag-5'>功率密度</b>

    功率密度与效率:如何权衡

    能量转换效率是一个重要的指标,各制造商摩拳擦掌希望在95%的基础上再有所提升。为了实现这一提升,开始逐渐采用越来越复杂的转换拓扑,如移相全桥(PSFB)和LLC变换器。而且二极管将逐渐被功耗更低的MOSFET所取代,宽带隙(WBG)器件更是以其惊人的开关速度被誉为未来的半导体业明珠。
    的头像 发表于 05-08 09:39 786次阅读
    <b class='flag-5'>功率密度</b>与效率:如何<b class='flag-5'>权衡</b>