0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Angew:静电屏蔽效应解决钠离子电池合金负极膨胀问题

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-12-09 11:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【研究背景】

钠离子电池凭借丰富的钠元素资源、与锂离子类似的工作机理等优势越来越受到科研工作者的青睐。然而,已在锂离子电池中商业化的石墨负极并不能很好的应用到钠离子电池中,因此,寻找合适的钠离子电池负极材料至关重要。金属锡负极因其高理论比容量、合适的工作电压和良好的导电性被认为是最有前景的钠离子电池负极材料之一。然而,金属锡与其他合金机制负极类似,在电池充放电过程中巨大的体积变化(~420%),导致严重的颗粒粉碎,不可避免的造成电池容量的损失,严重限制了其应用。

【工作介绍】

近日,山东大学杨剑教授和伍伦贡大学王娜娜研究员合作,以微米锡(μ-Sn)作为研究对象,利用有限元模拟揭示了钠离子合金类负极在充放电过程中结构破碎的深层原因,并向电池电解液中添加少量的简单阳离子(K+),巧妙的引入静电屏蔽效应,有效地缓解了μ-Sn负极局部钠化所引起的局部应力过大等问题,极大的提升了电池结构的稳定性。在2A g-1的电流密度下,稳定循环3000圈仍能保持565mAh g-1的比容量。同时,作者还将此策略拓展到其它合金负极材料---铋,进一步证明了该方法的普适性,为解决合金负极在电池应用中固有的体积膨胀问题提供了一种简单而实用的新方法。相关成果以“Electrostatic Shielding Boosts Electrochemical Performance of Alloy-Type Anode Materials of Sodium-Ion Batteries”为题发表在Angewandte Chemie International Edition上。山东大学博士生郑成为本文第一作者,伍伦贡大学王娜娜研究员,山东大学杨剑教授为本文通讯作者。

【内容表述】

1. 揭示合金类负极失效原因

0055f7bc-7771-11ed-8abf-dac502259ad0.png




为了从理论上理解钠离子合金类负极在电池充放电过程中失效的原因,作者通过有限元模拟,以金属Sn为模型,表明金属Sn在电池充放电过程中会发生不均匀的局部钠化现象,伴随此现象会在Sn表面产生不均匀的应力分布,最终导致电极结构的破裂。为了解决此现象,作者向电解液中添加简单阳离子---K+,利用其产生的静电屏蔽效应,消除Na+与金属锡初次钠化时因体积膨胀所形成的尖端效应,引导Na+与金属锡发生均匀的合金化,局部应力过大的现象得到了有效的缓解,进而提升了电极结构的稳定性。

2. 验证K+的稳定性

0086c9dc-7771-11ed-8abf-dac502259ad0.png




为了详细的论证K+添加到电解液中后的电化学行为,该研究设计了严谨的实验,并与理论计算相结合,证明K+的加入仅仅起到了静电屏蔽效应,并不会在电池的充放电过程中与Sn发生合金化,保证了K+能够在Sn表面持续稳定的产生静电屏蔽效应,保证了电池的稳定性。首先,在CV测试中,无论电解液中是否存在额外添加的K+,CV曲线表现出高度的重合,表明K+并没有氧化还原反应。在对仅放电的电极进行了EDS和XPS溅射测试,均没有检测到K元素的信号,进一步证明了K+没有被还原。同时,作用又进行了Nernst,MD,DFT计算,进一步从理论上印证这一理论。K+/K的标准氧化还原电位(-2.931 V vs. SHE)低于Na+/Na的氧化还原电位,并且K+/K的实际氧化还原电位会随着K+的浓度降低而进一步下降。通过Nernst方程计算得出,当K+添加浓度低于0.02M时,可以有效的阻止K+与Sn发生合金化。随后,作者又考虑了真实电解液中的情况,通过MD模拟得出,Na+与K+的溶剂化结构,[Na(diglyme)2]+,[K(diglyme)3]+。计算两者溶剂化结构的LUMO发现,[K(diglyme)3]+的LUMO位于-1.79 eV,高于[Na(diglyme)2]+(-2.14 eV),并且[K(diglyme)3]+显示出比[Na(diglyme)2]+(-4.69 eV)更大的溶剂化能(-24.97 eV)。这些数据意味着[K(diglyme)3]+的解离需要比[Na(diglyme)2]+的解离更多能量。所以,[Na(diglyme)2]+将率先被还原,所有这些结果在理论上和实验上都证明,K+不参与Sn的电化学反应。

3. 性能测试

00fc135e-7771-11ed-8abf-dac502259ad0.png



最终,电池在静电屏蔽效应的加持下,在2A g-1大电流的加持下,能够稳定循环3000圈,且容量仍保持有565mAh g-1的高容量。在高负载测试中,在4.5mg cm-2的负载量下仍能稳定循环100圈,面容量稳定在3.5mAh cm-2。
【结论】

综上,该研究揭示了钠离子合金类负极失效的原因,并从根源处引入静电屏蔽效应,有效地消除了Sn不均匀膨胀的现象,保证了极片的稳定性,表现出高的可逆容量,较为突出的倍率性能和优异的循环稳定性。K+带来的益处在高负荷电极、全电池和其它合金类负极材料中也得到了证实,反映了该解决策略的巨大潜力。
审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子
    +关注

    关注

    5

    文章

    571

    浏览量

    39504
  • 电解液
    +关注

    关注

    10

    文章

    874

    浏览量

    23716
  • 静电屏蔽
    +关注

    关注

    0

    文章

    17

    浏览量

    10001

原文标题:Angew:静电屏蔽效应解决钠离子电池合金负极膨胀问题

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    在高密度高功率设计中采用Pickering公司新型静电屏蔽技术, 有效抑制噪声干扰

    144系列舌簧继电器的全新静电屏蔽型号,可显著降低线圈驱动与高压电路之间的噪声干扰   2025年10月29 日,英国滨海克拉克顿:高性能舌簧继电器全球领导者Pickering
    的头像 发表于 10-29 09:22 1645次阅读
    在高密度高功率设计中采用Pickering公司新型<b class='flag-5'>静电屏蔽</b>技术, 有效抑制噪声干扰

    海辰储能亮相第四届钠离子电池产业链与标准发展论坛

    2025年9月24日-26日,第四届钠离子电池产业链与标准发展论坛在山东召开。会上,海辰储能凭借其首款电力储能专用钠离子电池∞Cell N162Ah成功上榜第六批
    的头像 发表于 10-13 10:52 545次阅读

    亿纬锂能首套大容量钠离子电池储能系统成功投运

    近日,亿纬锂能首套大容量钠离子电池储能系统在荆门基地成功并网调试,正式转入商业化运行阶段。这标志着亿纬锂能在新型储能技术领域实现关键突破,为新型储能产业发展与全球绿色能源转型注入新动能。
    的头像 发表于 09-18 14:19 839次阅读

    攻克无负极锂金属电池难题的新钥匙

    “终极选择”的无负极锂金属电池。这种电池在制造时直接使用铜箔作为负极基底,完全摒弃了传统的石墨等负极活性材料。在充电时,锂
    的头像 发表于 09-11 18:04 526次阅读
    攻克无<b class='flag-5'>负极</b>锂金属<b class='flag-5'>电池</b>难题的新钥匙

    中国团队技术突破温度枷锁,混合钠离子电池实现全气候应用

    电子发烧友网综合报道 钠离子电池作为一种新兴的储能技术,因其丰富的钠资源储备和相对较低的成本,近年来在新能源领域备受瞩目。尤其是在大规模储能系统中,钠离子电池被视为锂
    的头像 发表于 08-14 08:48 2731次阅读

    离子电池负极材料的挑战与硅基负极的潜力

    我国锂离子电池负极材料市场规模随着新能源汽车的兴起及锂离子电池等产品的发展增长迅速,目前已有百亿规模。目前商业上能够实现大规模应用的负极材料是石墨,其实际比容量的发挥已接近理论值(37
    的头像 发表于 08-05 17:55 922次阅读
    锂<b class='flag-5'>离子电池</b><b class='flag-5'>负极</b>材料的挑战与硅基<b class='flag-5'>负极</b>的潜力

    Macsen Labs在钠离子电池化学方面取得突破,申请临时专利,并推进试点规模制造

    ) ,钠离子电池的下一代阴极材料,钠离子电池技术取得重大突破。 该公司已为其专有综合工艺申请临时专利。 该材料已经在公司的电化学和电池研发
    的头像 发表于 07-22 09:16 431次阅读

    探究P2/O3相堆叠结构对钠离子电池正极材料性能的影响

    钠离子电池成本低、资源丰富,但其正极材料在深度脱钠时存在不利相变,影响离子传输和循环稳定性。P型堆叠结构虽利于钠离子扩散,但高脱钠态下易向O型堆叠转变,形成传输障碍。此研究聚焦于
    的头像 发表于 05-27 10:13 1559次阅读
    探究P2/O3相堆叠结构对<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>正极材料性能的影响

    水系电池金属负极腐蚀问题综述

    离子储存在阳极主体中的“摇椅”式金属离子电池相比,金属负极的使用使AMB具有更高的能量密度。此外,金属负极在正极材料的搭配上提供了更多的选择
    的头像 发表于 02-18 14:37 1349次阅读
    水系<b class='flag-5'>电池</b>金属<b class='flag-5'>负极</b>腐蚀问题综述

    分子嫁接策略调控钠离子电池硬碳负极界面化学

    导读 第一作者:孙瑜,左达先 通讯作者:郭少华教授 研究背景  由于钠的成本效益和丰富的资源,钠离子电池(SIBs)在电动汽车和智能电网领域展现出了诱人的应用前景。SIBs的电化学行为本质上受电
    的头像 发表于 01-15 10:02 1543次阅读
    分子嫁接策略调控<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>硬碳<b class='flag-5'>负极</b>界面化学

    调控磷酸酯基阻燃电解液离子-偶极相互作用实现钠离子软包电池安全稳定运行

    研究背景 相较资源有限的锂离子电池钠离子电池是一种极具前景的电化学储能技术,尤其适用于大规模储能系。然而,大多数钠离子电池体系仍基于传统碳
    的头像 发表于 01-06 17:41 1796次阅读
    调控磷酸酯基阻燃电解液<b class='flag-5'>离子</b>-偶极相互作用实现<b class='flag-5'>钠离子</b>软包<b class='flag-5'>电池</b>安全稳定运行

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 2654次阅读
    水系电解液宽电压窗口设计助力超长寿命水系<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>

    钠离子电池的工作原理与分类

    你是否曾经想过,我们日常生活中常见的食盐,有一天会成为推动科技进步的关键元素?随着科技的发展,一种新型电池——钠离子电池,正在逐渐进入我们的视野。那么,钠离子
    的头像 发表于 12-19 15:51 3015次阅读
    <b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>的工作原理与分类

    海辰储能推出首款电力储能专用钠离子电池

    自然界中钠储量丰富,其地壳丰度是锂元素的400倍以上。如果将其中1%做成钠电池,按照全球储能每年新增1TWh计算,能满足150亿年的储能需求。但是时至今日,钠电的发展不及预期,这让大家产生了两大认知误区,即钠离子电池市场容量小和
    的头像 发表于 12-19 11:44 1226次阅读

    OptiSystem应用:EDFA中离子-离子相互作用效应

    本案例展示了EDFA中的两种离子-离子相互作用效应: 1.均匀上转换(HUC) 2.非均匀离子对浓度淬灭(PIQ) 离子-
    发表于 12-17 08:52