0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

解耦电荷转移限制助力电池极速快充电

清新电源 来源:清新电源 作者:指北针 2022-12-05 11:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

研究背景

随着新能源汽车的广泛使用和技术升级,人们对于电池的快充性能提出越来越高的要求。过往的研究认为,离子在充满电解质的电极孔隙或电极颗粒内部的扩散是快速充电过程中的限速步骤,尤其对于高比能的电池,其中使用了高负载量的电极。为此,人们广泛探索具有高Li+扩散率的新型电极材料、电极结构工程和高导电性能电解质。

由于难以确定界面结构和离子传输机制,电极-电解质界面间的电荷转移在LIBs中的研究依然欠缺,电荷转移是指Li+(去)溶剂化和跨越多个相边界的转移,长期以来被认为是消耗能量的。除了专注于电极改性外,关于界面电荷转移是否决定了LIBs全电池的快速充电能力的问题,同样有待深入的研究。

02

成果简介

近日,清华大学张强教授和闫崇教授等在Angewandte Chemie International Edition上发表题为Unlocking Charge Transfer Limitations for Extreme Fast Charging of Li-Ion Batteries的研究论文。作者揭示了电荷转移动力学和电池快充性能之间的关系,提出通过电解质设计突破电荷转移势垒限制,实现电池的极速快充(XFC)功能(10分钟充至80 %的SOC)。

03

研究亮点

(1)揭示了电荷转移动力学和LIBs的快充性能之间的关系。在极速快充过程中发现Li+在正极-电解质界面上的转移是速控步骤。同时,但为了防止Li析出,必须同时降低正极和负极的电荷转移能垒。

(2)设计了一种概念验证电解液,该电解液极大地提升了184 Wh/kg的软包电池的循环寿命,500次仅仅损失5.2 %的比能量。对于21700圆柱电池,245 Wh kg-1高比能状态下的快充寿命延长了5倍。

04

图文导读

c570d150-7368-11ed-8abf-dac502259ad0.png

1(a)软包电池结构(b)两种电解质的离子迁移数和电子电导率含有EC/DMC LiPF6电解质(c和e)和EC/DMC LiTFSI电解质(d和f)的电池在不同倍率下的电化学性能

EC/DMC LiTFSI的离子电导率(8.9 mS cm−1)比EC/DMC LiPF6的离子电导率(11.7 mS cm−1)低24%,但两种电解质具有相似的Li+迁移数(图1b)。使用商用EC/DMC LiPF6电解质,当从3.0 C切换到4.0 C时,CC(恒流模式)的电荷接受度直线下降(图1C)。

在4.0 C时,电池立即达到4.2 V的上截止电压,具有较大的极化,充电模式几乎完全由CV(恒压模式)组成(图1e)。值得注意的是,尽管电解质离子电导率较低,EC/DMC LiTFSI电池表现出特殊的倍率性能。它在恒流充电过程有更高的电荷接受度,并显著降低了电池极化(图1d和1f)。

c5d5e572-7368-11ed-8abf-dac502259ad0.png

2 电荷转移动力学如何决定锂离子电池快速充电的示意图负极插层和正极脱插层的电荷转移能垒分别记为EA和EC(a) EA和EC较高的电池由于界面离子输运动力学较慢,充电速率较慢(b)高EA低EC的电池充电,但会导致严重的锂析出(c)EA和EC低的电池可以在不析出锂的情况下重复快速充电

由于上述电池快速充电能力的显著差异,不能用电极或电解质中的物质传输来解释。因此,作者利用Li+穿过电极-电解质界面的传输动力学加以分析。充电过程中,Li+从正极脱出进入电解液形成溶剂化鞘,克服EC的能垒,剥离溶剂化鞘后插入负极,克服EA的能垒。

如果两个电极的EA和EC都很高(图2a),由于极化较大,电池无法以高倍率充电,EC/DMC LiPF6就是这种情况。在EC/DMC LiTFSI的情况下,EC的减少提高了电池的倍率性能,但由于电极动力学不匹配,在XFC过程中导致严重的Li析出(图2b)。稳定的XFC只能在同时降低EA和EC的理想情况下才能实现,这样电池既可以快速充电又可以不析出锂枝晶(图2c)。

c603a7be-7368-11ed-8abf-dac502259ad0.png

3 (a) NCA正极充电过程中在0-90% SOC范围内的平均动态电荷转移电阻PRT后循环(b) EC/DMC LiPF6和(c) EC/DMC LiTFSI石墨电极的SEM图像插图是石墨电极的光学照片(d)在充电(插层)过程中,石墨电极在0-90% SOC范围内的平均动态电荷转移电阻和SEI电阻石墨电极在(e)三种不同电解质中的倍率性能和(f)对应的电压分布所有电化学试验均采用三电极扣电(g)基于CINEB方法的DFT计算揭示了典型的Li+穿过石墨-电解质界面的迁移路径(h)Li+溶剂化过程的能量分布

与EC/DMC LiPF6 (20.6 Ω)相比,EC/DMC LiTFSI中NCA正极在不同SOC下充电(脱插)的平均Rct(9.3 Ω)降低了一半以上,与软包电池优异的性能一致(图3a)。有趣的是,EC/DMC LiPF6电池不能支持XFC,但由于CV充电时有效电流低,它对Li沉积仍然免疫(图3b)。在EC/DMC LiPF6中,充电(插层)时的平均负极Rct比正极Rct小得多,证明了在XFC过程中正极的电荷转移是限速的(图3d)。

在电势大于0 V时,面积容量为3.2 mAh cm−2的商用石墨电极在EC/DMC LiPF6中只能在2.0 C下充电至约12% SOC(图3e)。添加了这两种电解质的石墨电极在2.0 C以上的倍率下立即极化到0 V,容量保持率低,从而增加了XFC过程中锂析出的倾向(图3f)。Li+的迁移路径和能量分布由密度泛函理论(DFT)计算确定,该计算基于CI-NEB方法(图3g)。结果表明,EC相比,含FEC的电解质更容易进行电荷转移(图3h)。

c62526f0-7368-11ed-8abf-dac502259ad0.png

4 (a)含有XFC-Ely(极速快充电解液)软包电池在PRT过程中的电化学性能和b)电压分布(c) XFC- ely电池在6.0 C 倍率XFC期间的能量密度保持情况电池在6.0 C的CCCV模式下充电固定时间为10分钟,然后在1.0 C放电d)不同周期6.0 C充电过程中软包电池的电压分布(e)使用商用Ely和XFC-Ely快速充电时高能NCA|Gr/SiOx21700电池的容量保持率(f) 21700电池在0°C条件下循环的容量保持情况

XFC-Ely的离子电导率仅为7.0 mS cm−1,比商用EC/DMC LiPF6低40%。尽管如此,当在4C充电时,XFC-Ely电池在CC阶段达到60%以上的SOC,在12.6分钟内达到80%的SOC同时,没有容量衰减的迹象(图4a-b)。XFC-Ely电池的初始能量密度为184 Wh kg−1,在循环500时,保持94.8%(只有5.2%的损耗),远远超过USDOE的目标(图4c)。在6C时,它可以在CC阶段充电至50% SOC,在10分钟内充电至80% SOC,即使在延长循环后也会出现边际功率衰减(图4d)。

对于商用Ely电池,由于锂析出,快速充电导致90个循环内容量快速衰减,而XFC-Ely电池在达到初始容量的80%之前持续超过450个循环(图4e)。使用XFC-Ely可以在0°C下循环21700电池,容量和库仑效率比商用电解液更高(图4f)。

05

总结和展望

目前,普遍认为电解液的离子传输是电池XFC的主要障碍。作者研究表明,正负极反应的平衡本质是XFC过程中正极输出和负极输入之间的平衡,这两个过程的不匹配可能导致灾难性的锂枝晶和短循环寿命。基于此,作者设计了一种概念验证电解质,使184 Wh kg−1软包电池的XFC(10分钟充电到80%)在500次循环后仅损失5.2%的能量密度,远远超过USDOE(美国能源部)的目标。与商用技术相比,原型的245 Wh kg−1高能21700电池在快速充电期间(充电25分钟至80%)的寿命延长了5倍。该工作为高性能快充锂离子电池的研究开发提供了重要参考和宝贵经验。

06

文献链接

Unlocking Charge Transfer Limitations for Extreme Fast Charging of Li-Ion Batteries. (Angew. Chem. Int. Ed., 2022, DOI:10.1002/anie.202214828)

原文链接:

https://onlinelibrary.wiley.com/doi/10.1002/anie.202214828







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21238
  • 电解液
    +关注

    关注

    10

    文章

    875

    浏览量

    23718
  • DMC
    DMC
    +关注

    关注

    0

    文章

    19

    浏览量

    19305

原文标题:清华张强&闫崇Angew:解耦电荷转移限制,助力电池极速快充

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    晶台光在PD充中的核心作用

    在USBPD(PowerDelivery)充技术中,光作为实现电气隔离与信号传输的关键元件。其通过光信号将充电器的高压侧与手机的低压侧进行物理隔离,有效防止高压冲击损坏内部电路,同时支持实时电压
    的头像 发表于 10-31 10:05 183次阅读
    晶台光<b class='flag-5'>耦</b>在PD<b class='flag-5'>快</b>充中的核心作用

    晶台光在电动车充电器中的关键应用与型号解析

    在电动车充电器领域,晶台光凭借其高效的电气隔离与信号传输能力,成为保障充电安全与稳定性的核心元件。以氮化镓充技术为例,晶台光通过光信号
    的头像 发表于 08-19 16:23 563次阅读
    晶台光<b class='flag-5'>耦</b>在电动车<b class='flag-5'>充电</b>器中的关键应用与型号解析

    SiLM2660CD-DG 高边NMOS电池管理驱动芯片的革新设计

    智能预充电管理 专用PFET驱动端口提供电流限制型预充电,防止深度耗尽电池接入时的大电流冲击,延长电芯寿命。 双通道独立控制 充电使能
    发表于 07-25 09:13

    2-3节锂电池升降压充电管理芯片,自带多种充协议

    在快节奏的生活中,每一秒都至关重要。汇铭达2节-3节串联锂电池充管理IC芯片方案,以科技之名,赋予你前所未有的充电体验。这不仅是一场技术的革新,更是对品质生活的极致追求。 XSP30多节串联锂
    的头像 发表于 07-16 16:59 997次阅读
    2-3节锂<b class='flag-5'>电池</b>升降压<b class='flag-5'>充电</b>管理芯片,自带多种<b class='flag-5'>快</b>充协议

    无轴承异步电机气隙磁场定向逆控制

    方法是近年来针对复杂非线性系统提出的一种直接反馈线性化方法,可被用于无轴承电机这一多变量非线性对象的动态控制。关于无轴承异步电机逆系统控制,已有相关研究,但大都是建立在转子磁场
    发表于 07-14 17:43

    无轴承异步电机的RFOC逆动态控制

    进行了转速和转子磁链之间、两个径向位移分量之间的动态控制方法研究,给出了逆动态控制系统结构。仿真结果表明,系统各状态变量之间实现了可靠的动态
    发表于 07-14 17:35

    充电充协议是什么

    充电充协议是充电宝与设备之间实现快速充电的通信规则,它定义了电压、电流、功率等参数的传输标准,确保设备与充电宝高效匹配,实现安全
    的头像 发表于 06-30 09:17 6905次阅读

    晶台光在手机PD充上的应用

    (光电隔离器)作为关键电子元件,在手机PD充中扮演信号隔离与传输的“安全卫士”。其通过光信号实现电气隔离,保护手机电路免受高电压损害,同时支持实时信号反馈,优化充电效率。晶台品牌推出KL817
    的头像 发表于 06-03 10:29 453次阅读
    晶台光<b class='flag-5'>耦</b>在手机PD<b class='flag-5'>快</b>充上的应用

    什么是充协议,充协议芯片的作用与特点

    一、什么是充协议? 充协议是一种通过提高充电效率来缩短设备充电时间的电池充电技术。它是通过在
    的头像 发表于 05-12 14:02 4293次阅读
    什么是<b class='flag-5'>快</b>充协议,<b class='flag-5'>快</b>充协议芯片的作用与特点

    万物智联 极速充 | 芯海科技电源充全芯亮相2025(春季)亚洲充电

    3月28日,由充电头网主办的2025(春季)亚洲充电展(ACE)于深圳前海国际会议中心隆重启幕。展会以“创新合作共赢”为核心主题,汇聚全球百余家顶尖企业参展,全面覆盖充全产业链,现场专业观众突破
    的头像 发表于 03-31 18:38 893次阅读
    万物智联 <b class='flag-5'>极速</b><b class='flag-5'>快</b>充 | 芯海科技电源<b class='flag-5'>快</b>充全芯亮相2025(春季)亚洲<b class='flag-5'>充电</b>展

    PD串联锂电池充方案,应用于3~4串锂电池快速充电

    随着智能设备的普及和便携性的要求部断增加,锂电池做位一种高能量密度、长周期寿命和较低自放电率的电池技术,逐渐成为主流,然而传统的锂电池充电时间长,效率低的问题也
    的头像 发表于 03-31 11:55 1421次阅读
    PD串联锂<b class='flag-5'>电池</b><b class='flag-5'>快</b>充方案,应用于3~4串锂<b class='flag-5'>电池</b>快速<b class='flag-5'>充电</b>

    永磁同步电机电流环改进内模控制的研究

    永磁同步电机采用矢量控制,实现了电流静态,而动态耦合关系依然存在 。传统的内模控 制器虽然在一定程度上实现了解,但由于只有 1 个
    发表于 03-26 14:25

    电池充电器和铅酸电池充电器怎么区分?有和不同?

    技术路线来看,三元锂电池和磷酸铁锂电池区别也比较大,三元锂电池放电寿命1000次,磷酸铁锂电池的寿命则可达到2000次; 4、充电方式:锂
    发表于 01-15 10:06

    电荷守恒定律的定义 电荷守恒定律与电场的关系

    电荷守恒定律的定义 电荷守恒定律是一个基本的物理定律,它指出在一个封闭系统(或孤立系统)中,电荷的总量保持不变。这意味着电荷既不能被创造,也不能被销毁,它只能从一种形式
    的头像 发表于 12-16 14:41 2995次阅读