导读:大家好,我是SimPC博士,主要从事工程结构抗震及减隔震研究,玻璃成型热工设备流动及传热研究,玻璃材料力学性能研究。精通有限元等数值算法的实现,有限元软件二次开发,数据处理,偏微分方程求解,优化算法,GUI界面开发等。有多项科研成果,其中SCI论文4篇,EI3篇,专利2篇。
近日我注册并认证了仿真秀专栏,将在仿真秀官网和App给平台用户带来Matlab有限元编程、复杂函数拟合和matlab绘图相关内容。此外还会带来隔震建筑Abaqus建模仿真分析等内容。本次案例主要以受均布荷载和集中荷载的变截面悬臂梁为研究对象,通过matlab编制四节点和八节点四边形单元有限元程序来对悬臂梁进行受力分析。
一、问题概述
如图1-1 所示,某变截面悬臂梁长度为2m,截面面积由0.6m至0.2m线性变化,受作用在自由端节点的集中荷载2P=kN和竖直方向均布荷载q=1kN/m作用,按平面应力问题分析,求解自由端节点挠度。变截面悬臂梁采用C30混凝土,弹性模量为E= 4 3 10 MPa,泊松比为。编制四节点和八节点四边形单元有限元程序,最终得到梁的变形。

图1-1 变截面悬臂梁
二、求解思路
对于本问题采用基于MATLAB 编制有限元分析程序进行求解,其基本组成部分包括前处理模块、分析主程序模块和后处理模块。在前处理模块中,实现节点坐标输入、单元节点编号、网络划分以及边界条件输入等工作;在分析主程序模块中,求解整体刚度方程;在后处理模块中,实现结果显示、数据输出等工作。本文主要针对四节点四边形单元与八节点四边形单元理论和对应的计算程序进行讲解。
有限元法的基本步骤:
-
几何域离散,获得标准化的单元;
-
通过能量原理(虚功原理或最小势能原理,获得单元刚度方程;
-
单元的集成(装配);
-
处理位移边界条件;
-
计算支反力;
- 计算单元的其他物理量(应力应变)。
-
节点描述
-
场描述
- 单元刚度方程。
1、平面问题的平衡方程、几何方程、物理方程
平面问题的弹性力学基础理论是推导有限元方程的基础,所以先罗列出平面问题的平衡方程、几何方程、物理方程,具体如公式(1)-(3)所示。至于这些方程的推导过程大家可以参考任意弹性力学课本,都会进行详细的讲解。

2、等参单元
在有限元方法中,若要离散边界为曲线或曲面的求解域,需要建立将形状规则的单元变换为边界为曲线或曲面的单元的方法,在有限元法中对应此问题所采用的变换方法是等参变换,即单元几何形状的变换和单元内长函数采用相同数目的节点及相同的插值函数进行变换。同样我们今天要讲的四边形单元也从其对应的等参单元的基础理论讲起。四边形单元可以由自然坐标系中的矩形单元映射而成,映射关系如图2-1所示。
图2-1 平面四节点矩形单元的映射关系
在自然坐标系下,矩形单元是规则化的,当自然坐标系中的单元取为双线性单元时(也即为四节点四边形单元),平面四节点矩形单元如图2-2所示,单元有4个节点,8个自由度。单元的形函数定义如下:
(4)其中,



function N=ShapeFun(s,t)
N1=1/4*(1-s)*(1-t);
N2=1/4*(1+s)*(1-t);
N3=1/4*(1+s)*(1+t);
N4=1/4*(1-s)*(1+t);
N=[N1 0 N2 0 N3 0 N4 0;
0 N1 0 N2 0 N3 0 N4];
end
同理平面八节点矩形单元如图2-3所示,单元共有8个节点,16个自由度。单元的形函数定义如下:



其中,




在进行映射变换时候,要求单元两个坐标系下的节点编号要对应。单元的节点变量用型函数进行插值,有

function N=ShapeFun(s,t)
%% 四边形八结点等参单元形函数矩阵
% 角点
N1=1/4*(1-s)*(1+t)*(-s+t-1);
N2=1/4*(1-s)*(1-t)*(-s-t-1);
N3=1/4*(1+s)*(1-t)*(s-t-1);
N4=1/4*(1+s)*(1+t)*(s+t-1);
% 边中点
N5=1/2*(1-t^2)*(1-s);
N7=1/2*(1-t^2)*(1+s);
N6=1/2*(1-s^2)*(1-t);
N8=1/2*(1-s^2)*(1+t);
N=[N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8 0;
0 N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8];

写成矩阵的形式就是

其中,J被称为Jacobi矩阵。反过来,形函数对物理坐标的导数为

另外,对于二维平面单元还要完成面积的映射,为

可以看出Jacob矩阵在等参变化中扮演着至关重要的角色,Jacob矩阵具体的表达式如下所示,

公式18对应的八节点单元雅各比矩阵的求解代码为:
公式18对应的四节点单元雅各比矩阵的求解代码为:function J=Jacobi(ie,s,t,Elements,Nodes)
ENodes = Elements(ie,:); %获取单元结点
xe = Nodes(ENodes(:),:); %获取节点坐标
x1=xe(1,1);y1=xe(1,2);
x2=xe(2,1);y2=xe(2,2);
x3=xe(3,1);y3=xe(3,2);
x4=xe(4,1);y4=xe(4,2);
J=1/4*[-(1+t) -(1-t) 1-t 1+t;1-s -(1-s) -(1+s) 1+s]*[x1 y1;x2 y2;x3 y3;x4 y4];
end
3、刚度矩阵的推导function J=Jacobi(ie,kesi,yita,Elements,Nodes)
ENodes = Elements(ie,:); %获取单元结点
xe = Nodes(ENodes(:),:); %获取结点坐标
x1=xe(1,1);y1=xe(1,2);
x2=xe(2,1);y2=xe(2,2);
x3=xe(3,1);y3=xe(3,2);
x4=xe(4,1);y4=xe(4,2);
J=1/4*[-(1-yita),(1-yita),(1+yita),-(1+yita);-(1-kesi),-(1+kesi),(1+kesi),(1-kesi)]*[x1 y1;x2 y2;x3 y3;x4 y4];
end
为了求出上述平面四节点和八节点单元的单元刚度矩阵,需要借助能量原理(虚功原理、最小势能原理)进行推导,能量原理的推导过程大家可以参考任意一本有限元理论书籍,都会有详细的推导过程,这里就不做进一步推导讲解,直接给出物理坐标和几何坐标系下的刚度矩阵的公式
(19)
(20)
其中B矩阵为应变矩阵,如下式;D矩阵为材料刚度矩阵,如公式(1)所示,是物理方程中表征应力应变关系的矩阵。从上述刚度矩阵的表达式可以看出,自然坐标和物理坐标间要完成坐标映射、偏导映射、面积隐射三个部分,具体映射公式已在上一节的等参单元讲解中详细给出。
(21)
4、高斯积分
公式(20)中的单元刚度矩阵通过数值积分求得,本案例中的四节点和八节点四边形等参单元均采用2*2个积分点的高斯积分即可求得精确结果。高斯积分点的坐标具体如图所示。

4-1 Gauss积分点示意图
公式(20)写成数值积分的形式为
(22)
对于8节点单元实现上述数值积分的代码如下所示:
r = [-sqrt(1/3) sqrt(1/3)]; % 2*2 高斯积分点
s = [r(1) r(1) r(2) r(2)];
t = [r(2) r(1) r(1) r(2)]; % 高斯积分点坐标
for i=1:4
J = Jacobi(E_ID,s(i),t(i),Elements,Nodes); % 雅可比矩阵
Nst = DiffShapeFun(s(i),t(i)); % 形函数关于自然坐标s,t求导
Nxy = zeros(8,2);
for j=1:8
) = (JNst(j,:)')'; % 形函数关于 x,y 求导=inv(J)*Nst :
end
Bm = [Nxy(1,1) 0 Nxy(2,1) 0 Nxy(3,1) 0 Nxy(4,1) 0 Nxy(5,1) 0 Nxy(6,1) 0 Nxy(7,1) 0 Nxy(8,1) 0;
0 Nxy(1,2) 0 Nxy(2,2) 0 Nxy(3,2) 0 Nxy(4,2) 0 Nxy(5,2) 0 Nxy(6,2) 0 Nxy(7,2) 0 Nxy(8,2);
Nxy(1,1) Nxy(2,2) Nxy(2,1) Nxy(3,2) Nxy(3,1) Nxy(4,2) Nxy(4,1) Nxy(5,2) Nxy(5,1) Nxy(6,2) Nxy(6,1) Nxy(7,2) Nxy(7,1) Nxy(8,2) Nxy(8,1)];
ke = ke+det(J)*Bm'*D*Bm*Width; %数值积分
end
5、均布荷载的施加
在有限元中分布力要转为等效节点荷载,而确定等效节点荷载的方法也是通过能量原理推导得到
(22)
上式中,第一项代表体积力的等效荷载,第二项代表面积力的等效荷载,这个案例我们只考虑面力荷载。实现公式22的代码为
function Pe=UniLoad(ie,N_ID_p1,q0,Nodes,Elements)
k=-0.625e-3; % 均布荷载值 N/mm
s = [-sqrt(1/3) sqrt(1/3)]; % 2*2 高斯积分点
ENodes = N_ID_p1(ie,:); %获取单元结点号
Pe=zeros(16,1); %生成临时单元节点力零列向量
x1=Nodes(ENodes(1),1);
x6=Nodes(ENodes(4),1);
L16=abs(x6-x1); %单元长度
for i=1:2 %用于高斯积分的求和循环
N_q=ShapeFun(s(i),1); % 4级子程序:ShapeFun(s(i),1)
q_x=q0;
Pe=Pe+N_q'*q_x*[0;L16/2];
end
end
三、Matlab有限元编程精品课
网格划分及变形结果如图3-1所示。本案例的详细视频教程和对应的matlab源码,请关注我的仿真秀官网和APP精品课程《Matlab有限元编程从入门到精通10讲》。

图3-1 梁变形结果
-
matlab
+关注
关注
165文章
2634浏览量
226014 -
编程
+关注
关注
86文章
2850浏览量
91035
发布评论请先 登录
相关推荐
大挠度弯曲的三角形悬臂梁MEMS探针设计
基于六面体单元热应力问题的Matlab有限元编程求解
虹科技术 | 用于气体密度和粘度传感器应用的压电 MEMS 悬臂梁的设计、模拟、制作和表征

HS-XJU-5.5J 悬臂梁冲击试验机
OptiMode:矢量有限元法-精度及优势
OptiMode:矢量有限元法-精度及优势
有限元网格剖分原理的详细介绍
OptiMode:矢量有限元法-精度及优势
HLJ托利多悬臂梁式称重传感器
济南全浮半浮悬臂梁式传感器模块厂家
SB托利多悬臂梁式称重传感器供应
济南TQ-G1M悬臂梁称重模块厂家
悬臂梁冲击试验机的试验准备
有限元法的原理
基于箱形梁CADCAE有限元分析

有限元分析中PCBA简化建模方法并实现有限元仿真模态分析

数显悬臂梁组合冲击测试机的主要特点及技术参数
悬臂梁称重传感器的工作原理
求一种有限元分析中PCBA的简化建模方法
结合了功能性和非功能性微型悬臂梁传感器的多参数气体监测系统
上海微系统所研究出谐振悬臂梁MEMS高端芯片
有限元分析ANSYS理论与应用的PDF电子书免费下载

针对一字型悬臂梁RF MEMS开关的两种降低驱动电压RF MEMS开关方法

有限元仿真分析软件的三种算法模型格式介绍
如何有效的学习CAE有限元分析
华盛顿大学利用悬臂梁开发出激光制冷新技术
悬臂梁式传感器的原理是什么?
非传统结构压电能量采集器的设计和制造与实验分析论文免费下载

如何使用Matlab进行有限元分析和硬盘的选购与使用资料说明

一种电磁型射频微机电系统开关的软磁悬臂梁制备工艺研究
压电换能器设计与能量获取特性研究
基于MEMS的硅微压阻式加速度传感器设计
基于有限元的PCB板上关键元件热可靠性分析
测量仪悬臂梁拓扑优化
可控电抗器的有限元分析
基于最优模糊控制的悬臂梁振动控制系统(Matlab仿真)

有限元分析相关知识的解析

Abaqus有限元仿真分析

Abaqus的应用领域大全及最新最全的培训课程-有限元科技8月开课
有限元科技元王RDS精益设计与仿真平台平台新品发布完美落幕
有限元科技内参-有限元行业现状与应用案例
深圳市有限元科技有限公司欢迎cae工程师们进行技术交流
COMSOL MULTIPHYSICS有限元法多物理场建模与分析
世铨celtron SQB-5000kg悬臂梁式传感器SQB-SS
(北京特迪亚) TEDEA3420-5klb 威世悬臂梁传感器
abaqus动力学有限元分析指南
【TL6748 DSP申请】检测悬臂梁传感器的振动频率并进行锁相,计算品质因数
悬臂梁冲击试验机原理
悬臂梁系统复模态计算时用eig求得的特征值存在非共轭现象
电阻层析成像有限元分析若干技巧

电机内电磁场的有限元计算

评论