0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子功率器件陶瓷基板的热疲劳和失效

王晴 来源:mzzzdzc 作者:mzzzdzc 2022-09-05 16:39 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

如今功率半导体模块主要用于控制电动机,尤其是在运输应用(汽车和航空电子设备)中。在提高大功率电子设备的可靠性和疲劳寿命,对于这些应用中的实际挑战是一个真正的挑战,在这些应用中功率模块越来越多地被使用。特别是为了降低发动机的燃料消耗。

在许多此类应用中,电源模块会经历周期性的温度变化。有两种类型的热循环叠加在一起,功率循环来自在运行阶段(焦耳效应)在模块的有源部分中施加的电流,以及来自环境温度变化的被动循环。在飞机发动机环境中,这些变化通常在-30℃和+180℃之间℃,在最坏的情况下,介于-55℃和200℃之间。因此,电力电子器件极易受到变幅热疲劳的影响。而这些研究的目的是了解失效起源的机制并对其进行建模,以优化功率模块的几何形状或制造过程,从而提高其疲劳寿命和可靠性。

在研究的模块由芯片、陶瓷基板和基板组成,芯片本身焊接在陶瓷基板上。为了确保陶瓷基板在芯片与基板的电绝缘,基板还必须允许从芯片到基板的功率耗散产生的热量排出。为此,氮化铝直接键合铜DBC基板通常用于功率模块,因为它们具有良好的导热性。它们由陶瓷层氮化铝组成,铜薄片通过高温氧化工艺粘合在两面。上铜层(厚度tCu1 = 127–300μm),然后被化学蚀刻以形成电路。瓷板(厚度tAlN = 635 μm)确保电绝缘,下部铜层保持平整并焊接到安装在散热器上的陶瓷基板(铜或AISiC)上。

DBC陶瓷基板的整体热膨胀系数接近于硅芯片的整体热膨胀系数,从而降低了芯片与基板界面处的热循环效应。相反特别是对于最高温度变化,热疲劳失效会出现在DBC陶瓷基板内部,并且限制模块的疲劳寿命。

因此,对DBC陶瓷基板的热疲劳进行了大致分析,铜和氮化铝的热膨胀系数之间的差异是热疲劳的根源。据观察裂纹要么直接从陶瓷层开始,要么从DBC陶瓷基板中的几何奇点开始。在第一种情况下,陶瓷层的失效会在几个循环后发生。在第二种情况下,如果温度变化足够大,陶瓷层会出现贯穿厚度的裂纹,这两种机制竞争破坏DBC基板内部结构。

本文分别对这两种失效机制进行了表征和建模,最后建立了DBC陶瓷基板的有限元模型,提出了提高模块疲劳寿命的方法。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    336

    文章

    30014

    浏览量

    258560
  • 功率器件
    +关注

    关注

    43

    文章

    2056

    浏览量

    94614
  • 陶瓷基板
    +关注

    关注

    5

    文章

    261

    浏览量

    12320
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    陶瓷基板、FPCB电路基板的激光微切割应用

    ~1000mm/s。适用于大功率电力电子模块、消费电子、柔性显示等领域。一、陶瓷基板激光切割设备1.设备类型与技术原理·激光加工原理:利用高
    的头像 发表于 11-19 16:09 509次阅读
    <b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>、FPCB电路<b class='flag-5'>基板</b>的激光微切割应用

    陶瓷基板如何检测?飞针测试全过程

    陶瓷基板
    efans_64070792
    发布于 :2025年09月06日 18:15:57

    DPC陶瓷基板:高精密电子封装的核心材料

    电子器件不断向高性能、小型化、高可靠性发展的趋势下,陶瓷基板因其优异的导热性、绝缘性及热稳定性,成为大功率电子封装的理想选择。其中,直接镀
    的头像 发表于 08-10 15:04 5425次阅读

    碳化硅陶瓷光模块散热基板

    碳化硅(SiC)陶瓷作为光模块散热基板的核心材料,其在高周次循环载荷下表现出的优异抗疲劳磨损性能,源于其独特的物理化学特性。
    的头像 发表于 07-25 18:00 807次阅读
    碳化硅<b class='flag-5'>陶瓷</b>光模块散热<b class='flag-5'>基板</b>

    氮化硅陶瓷逆变器散热基板:性能、对比与制造

    氮化硅(Si₃N₄)陶瓷以其卓越的综合性能,成为现代大功率电子器件(如IGBT/SiC模块)散热基板的理想候选材料。
    的头像 发表于 07-25 17:59 1252次阅读
    氮化硅<b class='flag-5'>陶瓷</b>逆变器散热<b class='flag-5'>基板</b>:性能、对比与制造

    陶瓷基板绿油印刷流程展示

    陶瓷基板
    efans_64070792
    发布于 :2025年07月12日 18:08:07

    精密陶瓷基板LDI曝光显影

    陶瓷基板
    efans_64070792
    发布于 :2025年07月08日 17:04:08

    DBA基板:开启高压大功率应用新时代的关键技术

    在新能源汽车、智能电网、轨道交通等高压大功率应用场景中,电子器件的散热效率和可靠性已成为技术突破的关键。近年来,DBA(Direct Bonded Aluminum,直接覆铝陶瓷基板
    的头像 发表于 06-26 16:57 549次阅读
    DBA<b class='flag-5'>基板</b>:开启高压大<b class='flag-5'>功率</b>应用新时代的关键技术

    紫宸激光焊锡机助力陶瓷基板焊接,推动电子行业发展

    陶瓷基板凭借其优异的导热性、机械强度、电气绝缘性和可靠性,成为电子封装领域的重要材料,广泛应用于LED、功率器件、高频电路等领域。而激光锡焊
    的头像 发表于 04-17 11:10 664次阅读
    紫宸激光焊锡机助力<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>焊接,推动<b class='flag-5'>电子</b>行业发展

    精密划片机在切割陶瓷基板中有哪些应用场景

    :氧化铝陶瓷基板因优异的导热性和绝缘性被用于LED芯片。精密划片机(如BJX6366)可实现微米级切割精度,确保芯片尺寸一致性,避免热应力导致的性能下降。功率器件封装:
    的头像 发表于 04-14 16:40 660次阅读
    精密划片机在切割<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>中有哪些应用场景

    为什么选择DPC覆铜陶瓷基板

    为什么选择DPC覆铜陶瓷基板? 选择DPC覆铜陶瓷基板的原因主要基于其多方面的优势,这些优势使得DPC技术在众多电子封装领域中脱颖而出……
    的头像 发表于 04-02 16:52 812次阅读

    DOH技术工艺方案解决陶瓷基板DBC散热挑战问题

    引言:随着电子技术的飞速发展,功率器件对散热性能和可靠性的要求不断提高。陶瓷基板作为功率
    的头像 发表于 03-01 08:20 1873次阅读
    DOH技术工艺方案解决<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>DBC散热挑战问题

    功率器件设计基础知识

    功率器件设计是实现IGBT、碳化硅SiC等高功率密度器件可靠运行的基础。掌握功率半导体的
    的头像 发表于 02-03 14:17 1258次阅读

    功率器件设计基础(十一)——功率半导体器件功率端子

    /前言/功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的设计基础知识,才能完成精确设计,提高
    的头像 发表于 01-06 17:05 1251次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>热</b>设计基础(十一)——<b class='flag-5'>功率</b>半导体<b class='flag-5'>器件</b>的<b class='flag-5'>功率</b>端子

    玻璃基板、柔性基板陶瓷基板的优劣势

    在半导体封装领域,玻璃基板、柔性基板陶瓷基板各自具有独特的优势和劣势,这些特性决定了它们在不同应用场景中的适用性。
    的头像 发表于 12-25 10:50 2918次阅读
    玻璃<b class='flag-5'>基板</b>、柔性<b class='flag-5'>基板</b>和<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>的优劣势