0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

10个Python机器学习库介绍

马哥Linux运维 来源:量子位 作者:量子位 2022-09-05 15:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1. Awkward Array

根据官方介绍,Awkward Array用于嵌套的、大小不一的数据,包括任意长度的列表、记录、混合的类型和缺失数据,使用起来类似NumPy。

看起来像是升级版的NumPy呀。

73291e1a-2c5b-11ed-ba43-dac502259ad0.png

果然,不同长度的数组可以直接放在一起运算。

734e081a-2c5b-11ed-ba43-dac502259ad0.png

并且,官方表示Awkward Array不仅使用起来更简便,在速度和内存上也有量级的优势。

看看是不是可以安排上了~

https://pypi.org/project/awkward/

2. Jupytext

相信大家对Jupyter Notebook都不陌生。

当你有了Jupytext这个小插件就可以将Jupyter Notebook和IDE完美结合,听起来是不是很棒!

从此Jupyter Notebook可以被存储为Markdown文件或多种语言的脚本文件。

Jupytext可以做的事主要有:

Jupyter Notebook的版本控制

在你喜欢的文本编辑器中编辑、合并或重构Notebook

在Notebook上使用Q&A检查

Python中使用的样子:

737403c6-2c5b-11ed-ba43-dac502259ad0.png

此项目在Github上已有5k+star。

https://github.com/mwouts/jupytext

3. Gradio

比Streamlit还轻量的UI设计库,Gradio让你轻松在浏览器中“玩转”你的模型,可以直接在浏览器中拖放图片,粘贴文字,录制声音,等等。

739bbbdc-2c5b-11ed-ba43-dac502259ad0.png

73b51c6c-2c5b-11ed-ba43-dac502259ad0.gif

只要将launch()函数中的参数设置为share=True,还能得到一个可分享的网址,拿到链接的朋友在电脑手机端都能打开,活脱脱就是一个小程序。

时常需要做Demo的小伙伴快看起来吧,此项目在Github上已有4.5k+star。

https://github.com/gradio-app/gradio

4. Hub

这个Hub在数据管理和数据预处理上可是一把好手。

它可以处理任何类型,任何大小的数据,并且因为数据储存在云端上,所以可以无缝在任何机器上访问。

被压缩为二进制字节的数据可以被存储在任何地方,并且只有在需要的时候才会被获取,所以没有TB级硬盘也可以处理TB级数据。

Hub贴心地提供了重要API,支持数据在常用工具(PyTorch等)上的使用,数据版本控制,数据转换等功能。

此项目在github上已有4.1k+star。

https://github.com/activeloopai/Hub

5. AugLy

AugLy是facebook最新推出的数据增强库,同时支持语音,文本,图像和视频类型的数据,包含了100多种增强方式。

数据对于模型训练至关重要,而标注大规模数据十分困难。由于人力资源,和模型特性的限制,数据增强的应用越来越广泛。

AugLy的优点:

处理类型更为全面。其他的数据增强库,例如Albumentations和NVIDIA DALI,主要负责图像相关数据的处理,文字数据不支持。

处理方式十分人性化。AugLy可以将一张图片做成备忘录,在图片/视频上叠加文字/Emojis,转发社交媒体上的截图,还可以帮助你处理诸如拷贝检测、仇恨言论检测或版权侵权等问题。

此项目在Github上已有4.1k+star。

https://github.com/facebookresearch/AugLy

6. Evidently

Evidently是用来监测模型效果的工具,可从Pandas DataFrame或csv文件中生成交互式可视化报告和JSON格式的效果简介。在Jupyter Notebook中可以使用。

741daec6-2c5b-11ed-ba43-dac502259ad0.png

目前可以提供6种报告:数据漂移、数值目标漂移、分类目标漂移、回归模型性能、分类模型性能和概率分类模型性能。

此项目在Github上已有1.8k+star。

https://github.com/evidentlyai/evidently

7. YOLOX

如果你熟悉YOLO的话,那你或许会对旷视今年推出的YOLOX感兴趣。

YOLO就是那个目标检测算法,可以被使用在汽车自动驾驶等前沿技术中。

而YOLOX是YOLO的无锚版本,设计更简单,但性能更好!它的目标是在研究界和工业界之间架起一座桥梁,同时弥合两方之间的差距。

这个Github上的开源项目在短短半年内已获得5.2k+star。

https://github.com/Megvii-BaseDetection/YOLOX

8. LightSeq

正如它的名字一样,LightSeq是一款由字节跳动开发的支持BERT、GPT、Transformer等众多模型的超快推理引擎。

可以看到它的表现,比FasterTransformer还要Fast。

747d7a04-2c5b-11ed-ba43-dac502259ad0.png

LightSeq支持的模型也是非常全面。

74a211de-2c5b-11ed-ba43-dac502259ad0.png

总之就是两个字“好用”。此项目在Github上已有1.9k+star。

https://github.com/bytedance/lightseq

9. Greykite

想预测COVID-19的恢复速度吗?那就来看看LinkedIn为了自家时间序列预测需求开发的Greykite吧。

74b22a74-2c5b-11ed-ba43-dac502259ad0.png

功能全面(多种时间趋势),界面直观,预测速度快和可扩展性强是它最大的亮点。

74e67bd0-2c5b-11ed-ba43-dac502259ad0.png

被应用在上面的三大算法:

Silverkite (Greykite’s flagship algorithm)

Facebook Prophet

Auto Arima

感兴趣的话就去研究看看吧,此项目在Github上已有1.4k+star。

https://github.com/linkedin/greykite

10. Jina and Finetuner

如今,在搜索引擎等应用上,语义识别的地位越来越高,因为它可以有效避免字词匹配的局限。

不过语义识别涉及的神经网络可能会让很多人感到头大,Jina和Finetuner可以帮你解决这些问题。

750864b6-2c5b-11ed-ba43-dac502259ad0.png

Jina是一个神经搜索框架,使任何人都能在几分钟内建立可扩展的深度学习搜索应用程序。

Finetuner配合Jina帮助你对神经网络进行调参,以获得神经搜索任务的最佳结果。

Jina和Finetuner适合没什么经验,又想尝试的朋友。

https://github.com/jina-ai/finetuner

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 函数
    +关注

    关注

    3

    文章

    4408

    浏览量

    66916
  • 机器学习
    +关注

    关注

    66

    文章

    8542

    浏览量

    136298
  • python
    +关注

    关注

    57

    文章

    4860

    浏览量

    89653

原文标题:这 10 个 Python 机器学习库,你用过哪些?

文章出处:【微信号:magedu-Linux,微信公众号:马哥Linux运维】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    一文了解Mojo编程语言

    Mojo 语言的具体介绍: 核心特点 Python 兼容性 Mojo 支持大部分 Python 语法和标准,可直接调用 Python
    发表于 11-07 05:59

    Python调用API教程

    不同系统之间的信息交互。在这篇文章中,我们将详细介绍Python调用API的方法和技巧。 一、用Requests发送HTTP请求 使用Pyth
    的头像 发表于 11-03 09:15 364次阅读

    自制巡线解迷宫机器人(上)

    巡线解迷宫机器人是我基于国产处理器来开发嵌入式应用的首次尝试,通过一月左右的理论学习与动手实践,我学会了如何在项目正式开始前做需求分析,如何根据机器人所要实现的功能来做软硬件方案
    发表于 10-20 10:39

    termux如何搭建python游戏

    戏开发流程 以Pygame为例,创建一基础窗口: ```python import pygame pygame.init() screen = pygame.display.set_mode
    发表于 08-29 07:06

    【嘉楠堪智K230开发板试用体验】K230机器视觉相关功能体验

    K230开发板摄像头及AI功能测评 摄像头作为机器视觉应用的基础,能够给机器学习模型提供输入,提供输入的质量直接影响机器学习模型的效果。 K
    发表于 07-08 17:25

    跟老齐学Python:从入门到精通

    础的学习介绍一门时下比较流行、并且用途比较广泛的编程语言,所以,本书读起来不晦涩,并且在其中穿插了很多貌似与Python 编程无关,但与学习者未来程序员职业生涯有关的内容。 获
    发表于 06-03 16:10

    python入门圣经-高清电子书(建议下载)

    和Pygal 等强大的Python 和工具介绍,以及列表、字典、if 语句、类、文件与异常、代码测试等内容; 第二部分将理论付诸实践,讲解如何开发三项目,包括简单的
    发表于 04-10 16:53

    是否可以使用OpenVINO™部署管理器在部署机器上运行Python应用程序?

    使用 OpenVINO™部署管理器创建运行时软件包。 将运行时包转移到部署机器中。 无法确定是否可以在部署机器上运行 Python 应用程序,而无需安装OpenVINO™ Toolkit 和
    发表于 03-05 08:16

    嵌入式机器学习的应用特性与软件开发环境

    设备和智能传感器)上,这些设备通常具有有限的计算能力、存储空间和功耗。本文将您介绍嵌入式机器学习的应用特性,以及常见的机器学习开发软件与开发
    的头像 发表于 01-25 17:05 1250次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一简单的神经网络。 神经网络由多个神经元组成,神经元之间通过权重连接。我们构建一包含输入层、隐藏层和输
    的头像 发表于 01-23 13:52 863次阅读

    使用Python实现xgboost教程

    使用Python实现XGBoost模型通常涉及以下几个步骤:数据准备、模型训练、模型评估和模型预测。以下是一详细的教程,指导你如何在Python中使用XGBoost。 1. 安装XGBoost
    的头像 发表于 01-19 11:21 2258次阅读

    适用于MySQL和MariaDB的Python连接器:可靠的MySQL数据连接器和数据

    和 MariaDB 数据服务器以及托管数据服务,以对存储的数据执行创建、读取、更新和删除操作。该解决方案完全实现了 Python DB API 2.0 规范,并作为 Windows、macOS
    的头像 发表于 01-17 12:18 861次阅读
    适用于MySQL和MariaDB的<b class='flag-5'>Python</b>连接器:可靠的MySQL数据连接器和数据<b class='flag-5'>库</b>

    适用于Oracle的Python连接器:可访问托管以及非托管的数据

    适用于 Oracle 的 Python 连接器 适用于 Oracle 的 Python 连接器是一种可靠的连接解决方案,用于从 Python 应用程序访问 Oracle 数据服务器和
    的头像 发表于 01-14 10:30 762次阅读

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多
    的头像 发表于 12-30 09:16 1997次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 714次阅读