0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种高压高离子导的“陶瓷包超浓缩离子凝胶”(SIC)新型混合电解质

倩倩 来源:清新电源 作者:清新电源 2022-08-31 11:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01导读

传统的锂离子电池(LIBs)通常含有易燃的有机液体电解质,存在安全隐患。得益于显著的机械强度和不可燃性,固态电解质(SSBs)有望解决传统LIBs的安全问题。同时,SSBs能够抑制锂枝晶的生长,可以使用金属锂取代石墨,从而获得更高的能量密度。一种理想的SSBs通常应该具备以下特性:(1)在25℃时具有高于10-3S cm-1的高离子导电性,(2)具有高于0.8的高锂离子传输数,(3)与锂金属阳极和高压阴极具有较好的兼容性。

02成果背景

受离子液体优越的电导率(>10-3S cm-1)启发,通过增加有机溶剂中的盐浓度导致溶剂分子的缺乏,可以显著改变离子溶剂化结构,从而导致许多不寻常的性质(如新的界面化学、离子转运、热和化学稳定性、电化学可逆性等)。因此,超浓缩概念在有机电解质体系中得到了广泛的认可。近日,有研究报道了一种高压高离子导的“陶瓷包超浓缩离子凝胶”(SIC)新型混合电解质。利用原位聚合将石榴石(LLZO)颗粒与超浓缩离子凝胶(3M LiTFSI-EmimFSI-PMMA)粘合在一起。所设计的电解质在25℃下不仅具有1.33×10-3S cm-1高离子电导率,而且离子转移数高达0.89。相关工作以Enabling High–Voltage “Superconcentrated Ionogel–in–Ceramic” Hybrid Electrolyte with Ultrahigh Ionic Conductivity and Single Li+–ion Transference Number为题发表在AdvancedMaterials期刊上。

03关键创新

(1)采用原位聚合方法解决了离子凝胶制备过程中聚合物在离子液体中的不混溶和电池制备过程中的界面问题;

(2)解决了聚合物电解质离子电导率不足、离子迁移数低以及与锂金属阳极和各种正极相容性差的关键问题。

04核心内容解读

0f2c7254-28b9-11ed-ba43-dac502259ad0.png

图1.原位合成SIC电解质的示意图。a) 引发MMA单体、PEGDMA交联剂和AIBN的自由基聚合。b) SIC电解质的网络。c) 与商用聚丙烯(PP)隔膜相比,SIC电解质的热稳定性。@Wiley

通过简单地混合组分和热引发自由基聚合来制备SIC电解质。浓缩的离子液体电解质(EmimFSI中的3M LiTFSI)首先与PMMA前体混合,然后添加石榴石Li6.5La3Zr1.5Ta0.5O12颗粒。随后,通过MMA单体、PEGDMA交联剂和AIBN热引发剂的热引发自由基聚合制备交联的PMMA聚合物。然后将离子液体电解质固定在交联的PMMA支架中,从而形成超浓缩离子凝胶(图1a)。同时,超浓缩离子凝胶与陶瓷颗粒原位结合,完成混合过程(图1b)。与常见的商用PP隔膜相比,所制备的SIC电解质显示出较高的热稳定性(图1c)。

0f6126e8-28b9-11ed-ba43-dac502259ad0.png

图2. SIC电解质的结构和热稳定性。a) SIC电解质的俯视SEM。b) 离子凝胶电解质的俯视SEM。c) SIC电解质的侧视SEM和EDS元素映射。d)SIC、例子凝胶和PMMA的XRD图谱。e) SIC和PMMA的热重曲线。@Wiley

图2aSIC电解质的俯视SEM只能观察到部分陶瓷纳米颗粒,而大部分颗粒被离子凝胶覆盖,离子凝胶的表面没有特征,表明离子凝胶为无定形结构,图2b离子凝胶的均匀和光滑的表面特性也证实了这一点。XRD显示超浓缩离子凝胶电解质膜在20°左右呈现“面包”峰,而SIC电解质仅显示石榴石的衍射峰,说明PMMA为非晶态,无定形结构将有利于锂离子传输。另外图2e热稳定实验显示出SIC具有较高的热分解温度(298℃),呈现较好的热稳定性,保证了电池的安全性。

0fbfdad0-28b9-11ed-ba43-dac502259ad0.png

图3. SIC和离子凝胶电解质中的表面化学。a-h)SIC(上曲线)和离子凝胶(下曲线)的XPS光谱。a) 宽幅扫描。b) C 1s光谱。c) O 1s光谱。d) S 2p光谱。e) N 1s光谱。f) F 1s光谱。g) Li 1s光谱。h) Ta 4f光谱。i)PMMA、EmimFSI、离子凝胶和SIC的FTIR光谱。@Wiley

与离子凝胶电解质相比,SIC电解质中来自TFSI–阴离子的F物种的面积比要高得多,这表明SIC中存在离解的TFSI–阴离子。LiTFSI在SIC电解质中的更大解离将促进Li+-离子传输并提高Li+-离子迁移数。PMMA的FTIR光谱中,在没有C=C的特征峰的情况下,C=O伸缩振动在1719 cm-1,C-O-C对称伸缩振动在1096 cm-1,C-H对称伸缩振动和弯曲振动分别在2867和1451 cm-1,证明了AIBN引发的PEMDGA和MMA的自由基聚合反应和PMMA的形成。

0ff5bfce-28b9-11ed-ba43-dac502259ad0.png

图4. SIC和离子凝胶电解质的电化学性质。a) SIC和离子凝胶在25℃下,–30℃冷冻前后的电化学阻抗谱。插图是等效电路。b) SIC和离子凝胶在–30℃-80℃温度范围内的电导率-温度曲线。c) SIC的直流极化曲线。d) SIC和离子凝胶的线性扫描伏安曲线。e,f) 具有SIC和离子凝胶的对称电池的电流-时间曲线。插图显示了极化前后电池的等效电路和阻抗谱。@Wiley

室温下SIC电解质具有高达1.33×10-3S cm-1的电导率,而超浓缩离子凝胶电解质在25℃下的离子电导率仅为5.49×10-4S cm-1(图4a)。特别的,在低温(-30℃)和高温(80℃)下SIC电解质均表现出比超浓缩离子凝胶电解质更高的电导率,分别为1.22×10–5S cm–1和6.3×10–3S cm–1(图4b)。因此,SIC电解质不仅具有超高的室温离子电导率,而且在低温条件下具有良好的离子迁移行为。同时显示SIC电解质仍然具有3.14×10–10S cm–1较低的电子电导率(图4c)和5.5 V vs. Li/Li+的宽电化学稳定性窗口(图4d)。这种宽电压窗口提供了支持锂金属电池中各种正极材料的氧化还原化学的潜力。

101bd092-28b9-11ed-ba43-dac502259ad0.png

图5.具有SIC和离子凝胶电解质的Li||LiFePO4和Li||NCM523准固态电池在1 C和25℃下的电化学性能。a) Li||LiFePO4电池的电压-容量曲线。b) 使用SIC和离子凝胶的Li||LiFePO4电池的循环性能。c)Li||NCM523电池的电压-容量曲线。d) Li||NCM523电池使用SIC和离子凝胶的循环性能。e) 循环后SIC/NCM523界面的形貌和元素组成。@Wiley

Li||LiFePO4电池在0.1C时的初始放电容量为156mAhg-1,在1C时的初始放电容量为136mAhg-1(图7a)。此外,Li||LiFePO4电池在300次循环后仍然具有良好的可逆性,放电容量为123mAhg-1(图7b)。相比之下,使用离子凝胶电解质的Li||LiFePO4电池在0.1C时的初始放电容量为134mAhg-1,在1C时的初始放电容量为76mAhg-1,并显示出持续的容量衰减(图7b)。

特别的,如图7c,d所示,使用SIC电解质、锂金属阳极和LiNi0.5Co0.2Mn0.3O2阴极的Li||NCM523电池可以在4.3 V的高压、1 C的高倍率下工作,并表现出良好的循环性能,在200次循环后的容量保持率可达72.7%,这证明了SIC具有较好的耐高压性。

05成果启示

综上所述,该工作报道了一种通过原位热引发自由基聚合合成的新型“陶瓷包超浓缩离子凝胶”电解质。这种电解质解决了离子电导率不足、离子迁移数低以及聚合物电解质与锂金属负极和各种正极相容性差的关键问题。该工作为安全和高能量锂金属电池提供了一条有价值的设计思路。

06参考文献

Yanfang Zhai, Wangshu Hou, Mingming Tao et al. Enabling High–Voltage “Superconcentrated Ionogel–in–Ceramic” Hybrid Electrolyte with Ultrahigh Ionic Conductivity and Single Li+–ion Transference Number,Advanced Materials,2022.

https://doi.org/10.1002/adma.202205560

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子
    +关注

    关注

    5

    文章

    571

    浏览量

    39515
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21236
  • 导电性
    +关注

    关注

    0

    文章

    165

    浏览量

    10251

原文标题:AM:陶瓷包超浓缩离子凝胶电解质

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MLPC的抗振性能如何与液态电解质电容比拟

    MLPC(固态叠层高分子电容)的抗振性能显著优于液态电解质电容 ,其核心优势体现在结构稳定性、材料特性及实际应用表现三方面,具体分析如下: 、结构稳定性:无液态泄漏风险,振动下结构完整 固态电解质
    的头像 发表于 11-22 10:49 576次阅读
    MLPC的抗振性能如何与液态<b class='flag-5'>电解质</b>电容比拟

    巴西研究团队推进钠离子电池电解质计算研究

    圣卡洛斯化学研究所博士后研究员、论文通讯作者Tuanan da Costa Lourenço表示:“这项工作的主要目的是评估增加基于质子型离子液体的电解质及其含有非质子型离子液体的类似物中钠盐
    的头像 发表于 11-12 16:19 100次阅读
    巴西研究团队推进钠<b class='flag-5'>离子</b>电池<b class='flag-5'>电解质</b>计算研究

    突破性固态聚合物电解质:像拼图样组装分子,打造安全高压锂电池

    【美能锂电】观察:为比能锂金属电池开发安全且耐高压的固态聚合物电解质,是当前电池研究的重要方向。传统液态锂电池因易燃易爆的特性,给电动汽车等应用带来了安全隐患。同时,石墨负极体系也限制了电池能量
    的头像 发表于 09-30 18:04 2639次阅读
    突破性固态聚合物<b class='flag-5'>电解质</b>:像拼图<b class='flag-5'>一</b>样组装分子,打造安全<b class='flag-5'>高压</b>锂电池

    共聚焦显微镜观测:电解质离子抛光工艺后的TC4 钛合金三维轮廓表征

    抛光(PEP)工艺具有抛光效率、适用于复杂零件等优势,可有效改善表面质量。本文借助光子湾科技共聚焦显微镜等表征手段,研究电解质离子抛光工艺对激光选区熔化成形T
    的头像 发表于 08-21 18:04 439次阅读
    共聚焦显微镜观测:<b class='flag-5'>电解质</b>等<b class='flag-5'>离子</b>抛光工艺后的TC4 钛合金三维轮廓表征

    新型快速离子导体的突破丨固态锂电池的优势与核心挑战

    随着移动电子设备与电动汽车的爆发式增长,锂离子电池已成为现代能源技术的支柱。相较于传统液态电解质体系,全固态锂电池凭借其高能量密度(可达400Wh/kg以上)和本质安全性(无泄漏、不燃爆),被视为
    的头像 发表于 08-11 14:54 1110次阅读
    <b class='flag-5'>新型</b>快速<b class='flag-5'>离子</b>导体的突破丨固态锂电池的优势与核心挑战

    离子电池电解质填充工艺:技术原理与创新实践

    在锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应用中实现了从
    的头像 发表于 08-11 14:53 635次阅读
    锂<b class='flag-5'>离子</b>电池<b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    离子电池创:性能、分类与GPE的应用前景

    。在这些电池中,电解质扮演着至关重要的角色。本文,美能光子湾将带您深入探讨电解质的分类、特性以及凝胶聚合物电解质(GPE)在现代锂离子电池中
    的头像 发表于 08-05 17:54 940次阅读
    锂<b class='flag-5'>离子</b>电池创:性能、分类与GPE的应用前景

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处锂沉积行为的影响

    清华新闻网2月7日电 硫化物固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率(≈10 mS/cm)、机械加工性能优异、与金属锂负极的化学兼容性良好等优点,是构建具有高能量密度与高安
    的头像 发表于 02-14 14:49 734次阅读
    清华大学:自由空间对硫化物固态<b class='flag-5'>电解质</b>表面及内部裂纹处锂沉积行为的影响

    调控磷酸酯基阻燃电解离子-偶极相互作用实现钠离子电池安全稳定运行

    研究背景 相较资源有限的锂离子电池,钠离子电池是一种极具前景的电化学储能技术,尤其适用于大规模储能系。然而,大多数钠离子电池体系仍基于传统碳酸酯基
    的头像 发表于 01-06 17:41 1804次阅读
    调控磷酸酯基阻燃<b class='flag-5'>电解</b>液<b class='flag-5'>离子</b>-偶极相互作用实现钠<b class='flag-5'>离子</b>软<b class='flag-5'>包</b>电池安全稳定运行

    陈军院士团队最新Angew,聚合物电解质新突破

    际应用潜力。凝胶聚合物电解质(GPEs)兼具机械性能和优异的电化学性能具备广阔的产业化前景。然而,传统的纳米填料添加策略往往由于填料分布不均匀和微域结构不致,导致
    的头像 发表于 01-06 09:45 2100次阅读
    陈军院士团队最新Angew,聚合物<b class='flag-5'>电解质</b>新突破

    镁合金牺牲阳极与电解质接触不良的原因

    、埋设深度不足 镁阳极的埋设深度决定了其与周围电解质的接触面积和接触质量。如果埋设深度不足,阳极可能与电解质的接触不良,导致保护电流分布不均,影响保护效果。特别是在地下水位较低或土壤干燥的区域
    的头像 发表于 01-02 21:00 526次阅读
    镁合金牺牲阳极与<b class='flag-5'>电解质</b>接触不良的原因

    Li3MX6全固态锂离子电池固体电解质材料

    ,但在室温下的离子导电率较低。 研究问题 本文报告了项发现,即Li3YCl6中的离子跃迁是由阴离子的集体运动触发的,这
    的头像 发表于 01-02 11:52 1816次阅读
    Li3MX6全固态锂<b class='flag-5'>离子</b>电池固体<b class='flag-5'>电解质</b>材料

    一种薄型层状固态电解质的设计策略

    通量、足够的机械强度以及与电极的粘附性接触等性质。目前,集无机和有机成分优点于体的复合固态电解质(CSE)有望实现均匀、快速的锂离子通量,但如何打破机械强度和粘附力之间的权衡仍然是
    的头像 发表于 12-31 11:21 1504次阅读
    <b class='flag-5'>一种</b>薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于电压锂金属电池

    研究背景 基于镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在电压充电时,镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极与电解质界面之间的
    的头像 发表于 12-23 09:38 1733次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于<b class='flag-5'>高</b>电压锂金属电池

    离子液体添加剂用于高压无负极锂金属电池

    ,醚溶剂氧化受到抑制,铝腐蚀加剧。因此,在使用LiFSI基浓缩电解质时,在不牺牲镀锂/剥离效率的情况下抑制LiFSI基电解质的Al腐蚀至关重要。其中,电解质添加剂已成为抑制Al腐蚀的最
    的头像 发表于 12-10 11:00 2079次阅读
    <b class='flag-5'>离子</b>液体添加剂用于<b class='flag-5'>高压</b>无负极锂金属电池