0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂离子电池电解液有什么作用?

工业运动控制 来源:工业运动控制技术 作者:工业运动控制技术 2023-12-26 17:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

锂离子电池作为一种便携式储能设备,广泛用于手机,笔记本电脑,相机,电动自行车,电动汽车等领域。其中锂电池电解液是一个不容忽视的方面。毕竟,占电池成本15%的电解质在电池能量密度,功率密度,宽温度应用,循环寿命和安全性能方面确实起着至关重要的作用。

电解质是锂电池的四种关键材料之一:正极,负极,隔膜和电解质,它被称为锂离子电池的“血液”,在电池的正负电极之间传导电子。是获得高电压和高电压的锂电池,保证诸如能量比的优势。

众所周知,锂离子电池的主要成分包括四个方面:正极材料,负极材料,电解质和隔膜。作为锂离子电池的重要组成部分,电解质在改善锂离子电池的循环性能和能量密度方面起着不可替代的作用,从而进一步提高了电动汽车的续航里程。锂离子电池的能量密度取决于电池的电压和容量。为了增加电池的能量密度,除了增加正极材料和负极材料的容量外,另一种方法是增加电池的工作电压。这样,电池会在高工作电压下影响电解液。高压性能也提出了新的技术要求。

电解液在锂电池正、负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。

高比能电解质:追求高比能是目前锂离子电池的最大研究方向,特别是当移动设备在人们的生活中占有越来越大的比例时,电池寿命已成为电池最关键的性能。

有机液体电解质:碳酸盐有机液体是锂盐的良好溶剂,其氧化电位为4.7V,还原电位约为1.0V(本文中的电压值均相对于锂的电位);另外,碳酸盐的粘度相对较低,锂离子迁移的活化能也较低。因此,最常用的电解质是碳酸盐及其混合物,包括PC,EC,DEC,DMC,EMC等。

液体电解质:电解质的选择对锂离子电池的性能有很大影响。它必须是化学稳定的,尤其是在更高的电势和更高的温度环境下不易分解,并且具有更高的离子电导率(》 10-3 S / cm),并且必须对阳极和阴极材料呈惰性,并且不能腐蚀它们。由于锂离子电池的高充电和放电电势以及嵌入负极材料中的化学活性锂,因此电解质必须使用有机化合物代替水。

离子液体:近年来,由于室温离子液体具有很高的氧化电位(约5.3),因此人们认为室温离子液体(例如1MLiTFSI / EMI-TFSI,EMIBF4,BMIBF4等)可替代锂离子电池电解质。V)并且不易燃。蒸气压低,热稳定性更好,无毒,沸点高,锂盐溶解度高等优点。然而,离子液体的高粘度削弱了锂离子的迁移率。

安全电解液:锂离子电池的安全性在燃烧甚至爆炸中都很重要。首先,电池本身是易燃的。因此,当电池过度充电,过度放电,短路时,当外部温度过高时,可能会导致安全事故。因此,阻燃剂是安全电解质研究的重要方向。

固体电解质:直接将金属锂用作负极材料具有较高的可逆容量,其理论容量高达3862mAh·g-1,是石墨材料的十倍以上,且价格较低。它被认为是新一代锂离子电池最具吸引力的负极材料,但它会产生树枝状锂。使用固体电解质作为离子传导可以抑制树枝状锂的生长,使得金属锂可以用作负极材料。

CRT专业提供工业自动化运动控制技术及解决方案!

---(激光)焊接、抛光、切割、直坐标机器人(桁架机械手)、等特种数控设备运动控制系统,(步进电机伺服电机驱动器电源)。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80225
  • 电解液
    +关注

    关注

    10

    文章

    874

    浏览量

    23717
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    从材料到电芯:锂离子电池浸润工艺中的“断层”挑战与解决方案

    在高性能锂离子电池的制造链条中,电解液与随后的浸润是决定电池最终电化学性能与安全性的关键步骤。尽管这一环节至关重要,但目前学术界仍缺乏针对该领域实验结果的系统性科学分析。既有的文献
    的头像 发表于 12-02 18:03 999次阅读
    从材料到电芯:<b class='flag-5'>锂离子电池</b>注<b class='flag-5'>液</b>浸润工艺中的“断层”挑战与解决方案

    退役储能电解液回收处理环节的环保监测关键-电容式位传感器

    随着新能源储能系统规模化应用,退役电解液的回收处理成为保障环境安全、实现资源循环的重要环节。退役电解液成分复杂,含有重金属离子、腐蚀性盐类及有机杂质,且不同类型储能电池(如锂
    的头像 发表于 11-18 16:42 1183次阅读
    退役储能<b class='flag-5'>电解液</b>回收处理环节的环保监测关键-电容式<b class='flag-5'>液</b>位传感器

    一文看懂锂离子电池的基础知识

    、工程应用与技术学习的关键内容。本文美能锂电将锂离子电池的技术信息转化为直观图像:以“结构-性能-工艺”为脉络,从电池内部正负极、隔膜、电解液的装配关系,到圆柱、方形
    的头像 发表于 09-04 18:02 748次阅读
    一文看懂<b class='flag-5'>锂离子电池</b>的基础知识

    锂离子电池的原理与材料全解析

    锂离子电池作为现代储能领域的核心技术,其高效稳定的能量转换能力支撑着新能源产业的快速发展。美能锂电作为行业创新企业,长期致力于锂离子电池材料研发与工艺优化,其技术突破为动力电池领域的革新提供了重要
    的头像 发表于 08-14 18:02 2315次阅读
    <b class='flag-5'>锂离子电池</b>的原理与材料全解析

    锂离子电池电解质填充工艺:技术原理与创新实践

    锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应
    的头像 发表于 08-11 14:53 630次阅读
    <b class='flag-5'>锂离子电池</b><b class='flag-5'>电解</b>质填充工艺:技术原理与创新实践

    锂离子电池创:性能、分类与GPE的应用前景

    。在这些电池中,电解质扮演着至关重要的角色。本文,美能光子湾将带您深入探讨电解质的分类、特性以及凝胶聚合物电解质(GPE)在现代锂离子电池
    的头像 发表于 08-05 17:54 940次阅读
    <b class='flag-5'>锂离子电池</b>创:性能、分类与GPE的应用前景

    锂离子电池隔膜耐热性能的优化进展与挑战

    锂离子电池通常由正极、负极、隔膜、电解液和封装材料五个部分组成,其中隔膜作为电池的关键部件,主要起到防止电极接触、保证离子的输送和储存电解
    的头像 发表于 08-05 17:53 964次阅读
    <b class='flag-5'>锂离子电池</b>隔膜耐热性能的优化进展与挑战

    锂离子电池极片涂布干燥技术解析:工艺、控制与优化

    锂离子电池的制造领域,许多环节需要干燥技术,如原材料干燥、注前电芯干燥、空气中水分的除湿。其中,极片涂布后的干燥工序更是直接影响着电池的最终品质。每一步都对
    的头像 发表于 08-05 17:51 806次阅读
    <b class='flag-5'>锂离子电池</b>极片涂布干燥技术解析:工艺、控制与优化

    锂离子电池焊接工艺的分析解构

    作为现代社会的“能源心脏”锂离子电池的应用涉及相当广泛。锂离子电池的的制作工艺之中,焊接技术是连接其内部组件、确保电池高效运作的的重要环节,直接决定了电池安全性、
    的头像 发表于 08-05 17:49 1623次阅读
    <b class='flag-5'>锂离子电池</b>焊接工艺的分析解构

    锂离子电池化成机理:从分子界面工程到量产工艺的核心解析

    直接影响安全性和能量密度。#Photonixbay.01化成反应机理:电化学激活与界面重构化成反应的核心是锂离子从正极脱嵌并嵌入负极的过程,伴随电解液的分解与界面
    的头像 发表于 08-05 17:49 950次阅读
    <b class='flag-5'>锂离子电池</b>化成机理:从分子界面工程到量产工艺的核心解析

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定
    的头像 发表于 08-05 17:49 1834次阅读
    <b class='flag-5'>锂离子电池</b><b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    攻克锂电池研发痛点-电解液浸润量化表征

    引言 电解液浸润性是影响锂离子电池性能的关键因素,直接关系到界面反应均匀性、离子传输效率及循环寿命。当前行业普遍存以下痛点: 材料层级:粉末/极片孔隙结构差异导致浸润速率波动 工艺层级:辊压、涂布等
    发表于 07-14 14:01

    FIB-SEM技术在锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究。锂离子电池通常由正极、负极、电解
    的头像 发表于 02-08 12:15 1029次阅读
    FIB-SEM技术在<b class='flag-5'>锂离子电池</b>的应用

    调控磷酸酯基阻燃电解液离子-偶极相互作用实现钠离子软包电池安全稳定运行

    研究背景 相较资源有限的锂离子电池,钠离子电池是一种极具前景的电化学储能技术,尤其适用于大规模储能系。然而,大多数钠离子电池体系仍基于传统碳
    的头像 发表于 01-06 17:41 1803次阅读
    调控磷酸酯基阻燃<b class='flag-5'>电解液</b><b class='flag-5'>离子</b>-偶极相互<b class='flag-5'>作用</b>实现钠<b class='flag-5'>离子</b>软包<b class='flag-5'>电池</b>安全稳定运行

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 2659次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠<b class='flag-5'>离子</b><b class='flag-5'>电池</b>