电子发烧友网报道(文/李宁远)在机器人行业里,伺服驱动是一个老生常谈的话题了。随着工业4.0的加速更迭,机器人的伺服驱动也随之升级。现在的机器人系统既要求驱动系统能控制更多的轴数,还要能实现更多智能化的功能。
在多轴工业机器人运行中的每个节点上,它必须在三个维度上使用不同大小的力才能完成设定的搬运等任务。机器人中的电机能够在精确的点提供可变速度和扭矩,控制器使用它们沿着不同的轴协调运动,从而实现精确的定位。在机器人完成搬运任务后,电机会减小扭矩,同时将机械臂返回到其初始位置。
这种高效伺服系统由高性能控制信号处理、精确感应反馈、电源以及智能电机驱动一起组成,提供复杂的接近瞬时响应的精确速度和扭矩控制。
高速实时伺服环路控制—控制信号处理与感应反馈
伺服环路实现高速数字化实时控制的基础离不开微电子制造工艺的升级。以最常见的三相电运行的机器人电机为例,PWM三相逆变器生成高频脉冲电压波形,以独立相将这些波形输出到电机的三相绕组中。在这三个功率信号中,电机负载的变化会影响感应、数字化并发送到数字处理器的电流反馈。再由数字处理器进行高速信号处理算法决定输出。
这里不仅要求数字处理器的高性能,对电源也有严格的设计要求。我们先看处理器部分,内核运算速度必须要跟上自动化升级的脚步,这个现在已经不再是问题。一些运控芯片将电机控制所必需的A/D转换器、位置/速度检测倍频计数器、PWM发生器等等与处理器内核集成于一体,使得伺服控制回路采样时间大大缩短,由单一芯片实现了自动加减速控制,齿轮同步控制,位置、速度、电流三环的数字化补偿控制。
控制算法如速度前馈、加速度前馈、低通滤波、凹陷滤波也在单芯片上实现。处理器的选取这里不再赘述,在此前的文章中已经对各类机器人应用做过分析,不管是低成本应用,还是对编程和算法有较高要求的应用目前市面上已经有很多选择,优势各异。
不只是电流反馈,其他的感应数据也会送到控制器中来跟踪系统电压和温度的变化。高分辨率的电流和电压检测反馈一直是电机控制里的难题。同时检测所有分流器/霍尔传感器/磁传感器的反馈无疑是最好的,不过这样对设计有很高的要求,而且计算能力要跟得上。
同时为了避免信号的丢失和干扰,在靠近传感器的边缘对信号进行数字化,随着采样率上升,信号漂移带来的数据错误也不少,设计需要通过感应和算法调整对这些变化进行补偿。这样伺服系统才能在各种条件下保持稳定。
可靠精准伺服驱动—电源与智能电机驱动
具有稳定高分辨率控制的超高速开关功能的电源为可靠精准的伺服控制供电,目前有很多厂商都有采用高频材料的集成式电源模块,设计起来容易了很多。
开关模式电源在基于控制器的闭环电源拓扑中运行,两种常用的电源开关是功率MOSFET和IGBT。栅极驱动器在采用开关模式电源的系统中很常见,开关模式电源通过对ON/OFF状态的控制在这些开关的栅极上进行调节电压和电流。
在开关模式电源和三相逆变器的设计上,各类高性能的智能栅极驱动器、内置FET的驱动器、集成控制功能的驱动器层出不穷。内置FET和电流采样功能的集成设计,可以大幅减少外部元器件的使用,PWM和使能、上下管、霍尔信号输入逻辑配置大大增加了设计的灵活性,既简化了开发流程,又提升了电源效率。
伺服驱动IC也将集成度发挥到最大,完全集成的伺服驱动IC可以大大缩短伺服系统出色动态性能的开发时间。预驱、传感、保护电路和电源桥集成到一个封装中可以最大限度地降低整体功耗和系统成本。这里列的是Trinamic(ADI)的完全集成式的伺服驱动IC框图,所有控制功能都在硬件中实现,集成ADC、位置传感器接口、位置内插器,功能齐全适用于各种伺服应用。
小结
高效伺服系统里高性能控制信号处理、精确感应反馈、电源以及智能电机驱动缺一不可,高性能器件的相互配合才能给机器人实时提供在运动中瞬间响应的精确速度与扭矩控制。在更高的性能之余,各个模块的高集成度也提供了更低的成本和更高的工作效率。
在多轴工业机器人运行中的每个节点上,它必须在三个维度上使用不同大小的力才能完成设定的搬运等任务。机器人中的电机能够在精确的点提供可变速度和扭矩,控制器使用它们沿着不同的轴协调运动,从而实现精确的定位。在机器人完成搬运任务后,电机会减小扭矩,同时将机械臂返回到其初始位置。
这种高效伺服系统由高性能控制信号处理、精确感应反馈、电源以及智能电机驱动一起组成,提供复杂的接近瞬时响应的精确速度和扭矩控制。
高速实时伺服环路控制—控制信号处理与感应反馈
伺服环路实现高速数字化实时控制的基础离不开微电子制造工艺的升级。以最常见的三相电运行的机器人电机为例,PWM三相逆变器生成高频脉冲电压波形,以独立相将这些波形输出到电机的三相绕组中。在这三个功率信号中,电机负载的变化会影响感应、数字化并发送到数字处理器的电流反馈。再由数字处理器进行高速信号处理算法决定输出。
这里不仅要求数字处理器的高性能,对电源也有严格的设计要求。我们先看处理器部分,内核运算速度必须要跟上自动化升级的脚步,这个现在已经不再是问题。一些运控芯片将电机控制所必需的A/D转换器、位置/速度检测倍频计数器、PWM发生器等等与处理器内核集成于一体,使得伺服控制回路采样时间大大缩短,由单一芯片实现了自动加减速控制,齿轮同步控制,位置、速度、电流三环的数字化补偿控制。
控制算法如速度前馈、加速度前馈、低通滤波、凹陷滤波也在单芯片上实现。处理器的选取这里不再赘述,在此前的文章中已经对各类机器人应用做过分析,不管是低成本应用,还是对编程和算法有较高要求的应用目前市面上已经有很多选择,优势各异。
不只是电流反馈,其他的感应数据也会送到控制器中来跟踪系统电压和温度的变化。高分辨率的电流和电压检测反馈一直是电机控制里的难题。同时检测所有分流器/霍尔传感器/磁传感器的反馈无疑是最好的,不过这样对设计有很高的要求,而且计算能力要跟得上。
同时为了避免信号的丢失和干扰,在靠近传感器的边缘对信号进行数字化,随着采样率上升,信号漂移带来的数据错误也不少,设计需要通过感应和算法调整对这些变化进行补偿。这样伺服系统才能在各种条件下保持稳定。
可靠精准伺服驱动—电源与智能电机驱动
具有稳定高分辨率控制的超高速开关功能的电源为可靠精准的伺服控制供电,目前有很多厂商都有采用高频材料的集成式电源模块,设计起来容易了很多。
开关模式电源在基于控制器的闭环电源拓扑中运行,两种常用的电源开关是功率MOSFET和IGBT。栅极驱动器在采用开关模式电源的系统中很常见,开关模式电源通过对ON/OFF状态的控制在这些开关的栅极上进行调节电压和电流。
在开关模式电源和三相逆变器的设计上,各类高性能的智能栅极驱动器、内置FET的驱动器、集成控制功能的驱动器层出不穷。内置FET和电流采样功能的集成设计,可以大幅减少外部元器件的使用,PWM和使能、上下管、霍尔信号输入逻辑配置大大增加了设计的灵活性,既简化了开发流程,又提升了电源效率。
伺服驱动IC也将集成度发挥到最大,完全集成的伺服驱动IC可以大大缩短伺服系统出色动态性能的开发时间。预驱、传感、保护电路和电源桥集成到一个封装中可以最大限度地降低整体功耗和系统成本。这里列的是Trinamic(ADI)的完全集成式的伺服驱动IC框图,所有控制功能都在硬件中实现,集成ADC、位置传感器接口、位置内插器,功能齐全适用于各种伺服应用。
小结
高效伺服系统里高性能控制信号处理、精确感应反馈、电源以及智能电机驱动缺一不可,高性能器件的相互配合才能给机器人实时提供在运动中瞬间响应的精确速度与扭矩控制。在更高的性能之余,各个模块的高集成度也提供了更低的成本和更高的工作效率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
机器人
+关注
关注
213文章
30579浏览量
219462 -
伺服系统
+关注
关注
14文章
594浏览量
41479
发布评论请先 登录
相关推荐
热点推荐
AI驱动工业自动化升级:芯森电子CR1V闭环霍尔电流传感器如何实现机器人伺服系统的精准控制
当前已经进入工业4.0时代,人工智能技术正推动制造业向智能化、柔性化转型。机器人伺服系统作为智能制造的核心组成部分,其控制精度直接影响生产效率和产品质量,电流传感器作为伺服系统的“感知神经”,是AI
集成多摩川磁性编码器的伺服电机与机器人关节设计创新
起着决定性作用。今天,我们就来聊聊集成多摩川磁性编码器的伺服电机与机器人关节的设计创新,这可是机器人领域里的一项大突破!
MT6816磁编码器的伺服系统小型化与高性价比设计
在工业自动化和机器人技术领域,伺服系统的性能直接影响设备的精度和响应速度。作为伺服系统的核心部件,磁编码器的性能优劣直接决定了整个系统的表现。MT6816磁编码器凭借其高精度、小型化和
伺服系统和PLC各自在什么场合使用
、铣削、钻孔等高精度加工。 案例 :伺服系统控制刀具的精确移动,实现±0.001mm的加工精度。 机器人关节控制 场景 :工业机器人、协作机器人(如焊接、装配、搬运)。 案例 :
主要人形机器人厂商的电机驱动与传感系统对比
人形机器人电机驱动与传感技术现状与趋势 1. 电机驱动关键技术与趋势 伺服电机 :人形机器人关节常采用闭环伺服系统,包含无刷电机、减速器、编码器和驱动器。例如优必选的关节驱动集成了高密
探讨 GaN FET 在人形机器人中的应用优势
德州仪器的 Eason Tian 和 Kyle Wolf 撰写,主要探讨了 GaN FET(氮化镓场效应晶体管)在人形机器人中的应用优势,旨在说明其如何解决人形机器人伺服系统面临的挑战。 *附件
伺服电动缸在人形机器人中的应用
集成高精密减速器、高性能电机、丝杆机构、传感器以及伺服控制系统,伺服电动缸在保证更小体积的基础上实现了驱控一体化,从而满足了人形机器人复杂场景的应用需求。四、提升性能与可靠性德迈传动
发表于 02-06 09:04
【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块
具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主
发表于 01-04 19:22
【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型
,能够利用\"思维链\"的技术将复杂任务分解为多个子任务,以渐进的方式解决问题。这不仅提高了任务的成功率,也显著增强了系统的鲁棒性,使得机器人可以更高效地应对复杂环境和多样化需求
发表于 12-29 23:04
伺服系统智能化发展趋势
(通常是电信号)来调整输出,以实现精确的位置、速度或力控制。在工业自动化领域,伺服系统广泛应用于机器人、数控机床、包装机械等设备中。 2. 伺服系统的智能化需求 随着生产效率和产品质量要求的提高,传统的
伺服系统在CNC机床中的应用
伺服系统在CNC机床中的应用至关重要,它作为CNC机床的“执行机构”,负责精确执行由CNC装置(数控系统)发来的运动命令,控制机床的移动部件(如工作台、滑块等)按照预设的路径和速度精确移动。 一
伺服系统在机器人中的作用 伺服系统与传统电机对比
伺服系统在机器人中的作用 机器人技术是现代工业自动化的重要组成部分,它涉及到机械、电子、计算机科学、控制理论等多个学科。在这些技术中,伺服系统扮演着至关重要的角色。
伺服系统调试技巧与注意事项
1. 了解伺服系统的基本组成 在开始调试之前,首先要对伺服系统的基本组成有一个清晰的认识。伺服系统通常包括伺服电机、伺服驱动器、编码器、控制
伺服系统与步进电机的区别 如何选择合适的伺服系统
在自动化和精密控制领域,电机的选择至关重要。伺服系统和步进电机是两种常见的电机类型,它们各自具有独特的优势和局限性。 伺服系统与步进电机的基本区别 1. 控制原理 伺服系统 :伺服系统
伺服系统工作原理解析 伺服系统在自动化中的应用
伺服系统工作原理解析 伺服系统是一种可以按照外部指令进行人们所期望的运动的自动控制系统,它能使物体的位置、方位、状态等输出被控量跟随输入目标(或给定值)的变化而变化。伺服系统主要由

机器人里的高效伺服系统


评论