0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习使聚变能源成为可能

李秀珍 来源:ht_liu 作者:ht_liu 2022-07-30 17:46 次阅读

麻省理工学院的研究人员正在测试机器学习技术,以更好地了解聚变能中的湍流等离子体现象。根据麻省理工学院新闻最近的一篇文章,在Physical Review E和Physics of Plasmas 上发表的两篇论文中,开发了一种新的深度学习框架,该框架利用人工神经网络来表示减少的湍流理论。

所有核聚变研究人员的目标是使该技术成为全球电网的可行能源。要做到这一点,需要理解和解决无数物理和工程问题,例如理解等离子体的湍流运动,即离子和电子在反应器中移动的集合。称为托卡马克的环形结构的场线迫使等离子体粒子被限制足够长的时间以产生显着的净能量增益,当您不仅有高温而且还有小空间时,这是一个挑战。

科学家们正专注于等离子体湍流的数值模拟,以更好地了解未来聚变反应堆内部的状况。但这些计算很复杂。在保持预测准确性的同时工作得更快的简化理论的发展可以加快进展。

核聚变

等离子体是构成可观测宇宙 99.9% 以上的物质,被称为物质的第四态(其他已知状态是固态、液态和气态)。在足够高的能量下,气体被电离,产生带正电的粒子(原子核)和带负电的粒子(电子)的混合物。虽然恒星中的等离子体受到巨大重力的限制,但地球上的情况并非如此。主要挑战之一是开发能够将等离子体加热到所需温度并将其限制在足够长的时间以进行热核反应以释放维持新聚变反应的动能的设备。一种被称为磁约束的有前途的方法被用于称为托卡马克(“磁环室”的俄语缩写)的设备中,

这些是非常复杂的机器,从高温等离子体条件(超过 100,000,000 度)到操作超导磁体所需的低温(低于-200 摄氏度)仅需几米。

建造这些设备是一项具有挑战性的任务,尤其是因为与等离子体相关的不稳定性,这会对反应堆组件造成损坏的危险。然而,这种限制具有安全优势,因为链式反应基本上永远不会失控地发展。

托卡马克配置中的磁场必须是三种类型: 环形磁场,由环形线圈产生;环形场,由环形线圈产生;和由环形线圈产生的环形场。这些线圈的目的是沿机器的对称轴产生磁场,推动带电等离子体粒子沿该方向流动。控制等离子体位置的外部线圈提供垂直场。极向场由流过等离子体的电流产生并保持平衡。

等离子体湍流

磁约束聚变装置在聚变发电厂的粒子和能量约束方面存在重大不确定性。由于机载等离子体的环境对各种工艺有很大影响,因此边界区域对于评估聚变装置的整体实用性至关重要,等离子体和整个结构的建模仍然是一项关键任务。

与边界等离子体相关并广泛应用于分析边缘湍流的一种特殊传输理论是减少漂移的 Braginskii 模型。几十年来,托卡马克物理学家经常使用这种简化的“双流体理论”来模拟实验中的边界等离子体,尽管其精确度尚不确定。

pYYBAGLimhuARxh0AAGnStGVvp8419.png

通过这项工作,他们还展示了一种新的深度学习技术,可以诊断与减少漂移的 Braginskii 理论直接一致的未知湍流场波动。众所周知,等离子体湍流难以模仿,比空气或水湍流更难模仿。通过将机器学习技术嵌入到方程中,您可以从少量观察中获得大量信息。据麻省理工学院的研究人员称,这些新颖的分析方法可以为评估混沌系统开辟新途径,并扩大关于聚变等离子体湍流的发现范围。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 能源
    +关注

    关注

    3

    文章

    1268

    浏览量

    42997
  • 机器学习
    +关注

    关注

    66

    文章

    8061

    浏览量

    130441
收藏 人收藏

    评论

    相关推荐

    基于可穿戴MEMS加速度计和机器学习的传感器内人体步态分析

    传感器内(In-sensor)计算可能会成为在小型设备(例如可穿戴医疗设备和物联网设备)中部署机器学习(machine learning)的全新方法,这些设备必须在有限的能源资源下安全
    的头像 发表于 03-26 09:20 262次阅读
    基于可穿戴MEMS加速度计和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的传感器内人体步态分析

    人工智能和机器学习的顶级开发板有哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成电路(IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器学习算法和深度
    的头像 发表于 02-29 18:59 308次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级开发板有哪些?

    深井中的深度学习:MCU+AI,让“不可能”的田园机井智能抄表成为可能

    深井中的深度学习:MCU+AI,让“不可能”的田园机井智能抄表成为可能
    的头像 发表于 09-21 17:41 512次阅读
    深井中的深度<b class='flag-5'>学习</b>:MCU+AI,让“不<b class='flag-5'>可能</b>”的田园机井智能抄表<b class='flag-5'>成为可能</b>!

    AI与机器人翻转半导体界:不可能的任务成为可能#人工智能

    AI人工智能
    北京中科同志科技股份有限公司
    发布于 :2023年09月15日 09:20:56

    机器学习发展历程

    机器学习发展历程:机器学习发展现状、机器学习发展前景和机器
    的头像 发表于 08-17 16:30 1056次阅读

    机器学习有哪些算法?机器学习分类算法有哪些?机器学习预判有哪些算法?

    机器学习有哪些算法?机器学习分类算法有哪些?机器学习预判有哪些算法?
    的头像 发表于 08-17 16:30 1265次阅读

    机器学习theta是什么?机器学习tpe是什么?

    解一下theta。在机器学习中,theta通常表示模型的参数。在回归问题中,theta可能表示线性回归的斜率和截距;在分类问题中,theta可能表示多项式模型的各项系数。这些参数通常是
    的头像 发表于 08-17 16:30 1055次阅读

    python机器学习概述

    Python机器学习概述 机器学习是人工智能领域的一个重要分支,是一种可以自动改进和学习的算法。在过去的几十年里,
    的头像 发表于 08-17 16:11 715次阅读

    机器学习和深度学习的区别

    机器学习和深度学习的区别 随着人工智能技术的不断发展,机器学习和深度学习已经
    的头像 发表于 08-17 16:11 2900次阅读

    如何使用Arm CMSIS-DSP实现经典机器学习

    通常,当开发人员谈论机器学习(ML)时,他们指的是神经网络(nn)。 神经网络的巨大优势在于,你不需要成为一个领域专家,而且可以迅速找到一个可行的解决方案。神经网络的缺点是它们通常需要无数的记忆
    发表于 08-02 07:12

    浅析NASA的聚变能源新捷径

    一个多世纪前,物理学家首次提出了氢元素聚变成氦从而为太阳提供能量的猜想。研究人员花了很多年的时间才揭开秘密,原来是恒星内部较轻的元素碰撞成较重的元素,并在这个过程中释放能量。
    的头像 发表于 08-01 09:16 685次阅读
    浅析NASA的<b class='flag-5'>聚变</b><b class='flag-5'>能源</b>新捷径

    新协议!微软从核聚变发电站购买电力

    微软刚刚签署了一项令人瞠目结舌的协议,从核聚变发电站购买电力。核聚变,通常被称为能源的圣杯,是一种潜在的无限清洁能源,科学家们在一个世纪的大部分时间里一直在追求它。
    的头像 发表于 05-23 14:32 632次阅读

    如今MCU上“跑”机器学习,也很给力

    等目的。然而,对高性能计算资源的需求将许多ML应用程序限制在云中。也就是说,只有云数据中心级别的性能才能满足ML对算力的要求。令业界兴奋的是,随着算法设计以及微处理器体系结构的不断进步,在最小的微控制器(MCU)上运行复杂的机器学习工作负载正在
    的头像 发表于 05-19 09:55 1406次阅读
    如今MCU上“跑”<b class='flag-5'>机器</b><b class='flag-5'>学习</b>,也很给力

    高效理解机器学习

    来源:DeepNoMind对于初学者来说,机器学习相当复杂,可能很容易迷失在细节的海洋里。本文通过将机器学习算法分为三个类别,梳理出一条相对
    的头像 发表于 05-08 10:24 325次阅读
    高效理解<b class='flag-5'>机器</b><b class='flag-5'>学习</b>

    “换道超车”才成为可能,萨科微slkor继续领跑新赛道

    萨科微半导体副总贺俊驹说,近70年来中国在半导体技术上一直处于相对落后的局面,直至第三代半导体碳化硅、氮化镓的出现,“换道超车”才成为可能。深圳市萨科微半导体有限公司,正是这条新赛道上的领先选手之一
    的头像 发表于 05-04 14:46 270次阅读
    “换道超车”才<b class='flag-5'>成为可能</b>,萨科微slkor继续领跑新赛道