0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何可靠地测量固态电解质的离子电导率?

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-07-22 11:26 次阅读

在电动汽车市场强劲增长的推动下,提高电池的能量密度和安全性已成为最近的主要研究议题之一。在该领域,全固态电池(ASSBs)因具有以下特点而极具发展前景:(i)在ASSB中用锂金属负极代替传统锂离子电池的石墨负极,能够使体积能量密度增加约70%。(ii)用不可燃的固态电解质(SE)代替传统锂离子电池的易燃性碳酸盐-基电解质,可显着降低电池起火的风险。

基于硫化物的SEs是最有前景的一类,因为它们易于合成并具有高的Li+离子电导率。在过去的十年中,Li+离子电导率得到了极大的提高,许多新的硫化物-基电解质甚至超过了碳酸盐-基液态电解质的离子电导率。目前有四种不同的硫化物-基电解质:(1)LGPS-型晶态Li10MP2S12(M = Ge,Sn)材料;(2)硫锗矿-型晶态Li6-xPS5-xCl1+x材料;(3)玻璃陶瓷,如Li7P3S11;(4)无定型Li2S-P2S5和Li2S-P2S5-LiI材料。研究表明,相同材料的离子电导率值也会存在巨大差异,特别是在非-退火样品的情况下。这种情况不仅是由不同的合成方法引起的,而且是由在SE颗粒制造过程中和离子电导率测量过程中的不同条件引起的。特别是,在SE颗粒制造过程中施加的压力(制造压力)以及电极|固态电解质|电极堆栈装置电导率测量过程中施加的压力(堆栈压力)对获得的离子电导率值有很大影响。

【成果简介】

在本研究中,德国马尔堡大学Bernhard Roling课题组系统研究了制造压力和堆栈压力对非晶电解质、玻璃陶瓷电解质和微晶电解质的离子电导率的影响。研究发现,这些类型的材料在制造压力和堆栈压力上对离子电导率的影响存在显著差异(图1),并对以下方面有一定影响:(1)获得特定非-退火SE颗粒可靠的离子电导率值,该值接近SE颗粒的真实本体离子电导率;(2)评估SEs在ASSBs中的性能。

【结果与讨论】

通过球磨法制备了以下材料:Li10GeP2S12,Li6PS5Cl,Li6PS5Br,Li5.5PS4.5Cl1.5,Li7P3S11和80 Li2S-20 P2S5。所制备的材料主要是非晶态(AM材料)或部分结晶的含有纳米微晶的玻璃陶瓷(GC材料)。所制备的Li7P3S11主要是无定形的,但可通过260 ℃左右的低温退火转化为GC材料。具有高结晶度的微晶Li10GeP2S12、Li6PS5Cl、Li6PS5Br和Li5.5PS4.5Cl1.5是通过球磨粉末在550 ℃左右的高温下退火制备的(μC材料)。通过在两个碳化钨电极之间夹入SE小球(在小球表面不溅射金属膜)来进行堆栈压力相关的离子电导率测量。所施加的最大压力约为500 MPa。或者,在颗粒表面溅射金属膜,并在约10 MPa的低堆栈压力下在特定电池中测量离子电导率。

d3c5408e-096d-11ed-ba43-dac502259ad0.png

图1. 与无定形或玻璃陶瓷固态电解质相比,微晶固态电解质的制造-压力-依赖-形貌。当非晶或玻璃陶瓷材料中的颗粒经历压力-诱导烧结过程时,微晶颗粒仅通过制造压力而致密,而不是烧结在一起。这种独特的形貌对释放制造压力后的Li+离子电导率产生巨大影响。

图2展示了不同AM、GC和μC固态电解质的Li+离子电导率数据,其是针对不同的颗粒制造压力值绘制的。在低堆栈压力下,由于SE颗粒与碳化钨电极接触不良,所有材料的离子电导率值都非常低。

d3f5170a-096d-11ed-ba43-dac502259ad0.png

图2. 不同制造压力下,离子电导率的堆栈压力依赖性:(a)AM-Li7P3S11,(b)AM-80 Li2S-20 P2S5,(c)GC-Li7P3S11,(d)GC-Li6PS5Br,(e)μC-Li6PS5Br,(f)μC-Li10GeP2S12。

在AM材料和GC材料的情况下(见图2a-d),离子电导率随着堆栈压力(红色区域)的增加而急剧增加,然后在堆栈压力》30-50 MPa(绿色区域)下达到平稳状态,此时颗粒/电极接触良好,足以获得可靠的电导率值,接近SE颗粒的真实本体离子电导率。然而,离子电导率的平台值随着颗粒制造压力的增加而显著增加。这表明随着制造压力的增加,样品显著致密化,这降低了由颗粒内的孔以及不同无定形颗粒之间的传输障碍所引起的离子传输路径的曲折度。在400-500 MPa的非常高的制造压力下,离子电导率的制造压力依赖性变弱,表明随着制造压力的增加,样品颗粒不能进一步致密化。这与高制造压力下颗粒密度的均化效应一致。

相比之下,μC-SEs显示出明显的离子电导率-堆栈压力依赖性(见图2e,f)。在30-50 MPa的低堆栈压力下,离子电导率随着堆栈压力的增加而急剧增加,正如在AM和GC材料中观察到的一样,这是由改进的颗粒/电极接触(红色区域)引起的。然而,在大约50 MPa和200-250 MPa之间的压力下,μC材料显示出第二个依赖于堆栈压力的状态:随着堆栈压力的增加(深黄色状态),离子电导率的增加较弱。只有在高于200-250 MPa的堆栈压力下,才能观察到具有几乎恒定离子电导率的平台状态(绿色状态)。另一方面,离子电导率的制造压力依赖性比在AM和GC材料中观察到的要弱得多。

为了说明这种明显的制造压力依赖性,图3绘制了GC-Li6PS5Br和μC-Li6PS5Br在不同堆栈压力下,制造压力与离子电导率的关系。在低堆栈压力下,测得的离子电导率非常低,并且受集流体和样品之间接触不良的影响。所以,随着制造压力的增加,离子电导率的明显下降是由于不可重复的接触造成的。另一方面,施加超过50 MPa的堆栈压力导致GC-Li6PS5Br的电导率几乎恒定(与堆栈压力无关),而μC-Li6PS5Br显示先前描述的堆栈压力相关的离子电导率。

d427329e-096d-11ed-ba43-dac502259ad0.png

图3. 不同堆栈压力下,离子电导率的制造压力依赖性:(a)GC-Li6PS5Br和(b)μC-Li6PS5Br。

进一步,为了阐明这些材料之间的差异缘由,通过聚焦离子束(FIB)分析了所制备颗粒的代表性横截面,并通过二次电子显微镜(SEM)对横截面进行了成像。这些颗粒是在不同的制造压力下制造的,在颗粒表面溅射薄电极层并施加约10 MPa的低堆栈压力后,再测量这些颗粒的离子电导率。因此,尽管堆栈压力较低,但仍存在良好的颗粒/电极接触。

在图4中,展现了四个代表性样品的SEM横截面图像以及施加的制造压力和测量的离子电导率。图4a-b展现了两种不同制造压力下GC-Li6PS5Br的横截面。随着制造压力的增加,样品明显致密化,并伴随着无定形颗粒尺寸的增加。这表明发生了无定形颗粒的压力-诱导烧结,从而大大降低了颗粒的表面能。这种压力-诱导烧结应该是不可逆的,所以在施加特定的制造压力后,离子电导率应与堆栈压力无关(只要堆栈压力不超过先前施加的制造压力)。正如预期的那样,这些溅射颗粒所测量的Li+离子电导率随着制造压力的增加而增加。

在图4c-d中,显示了施加392 MPa制造压力后μC-Li6PS5Br的横截面。图4c中的样品是通过球磨和随后在550 ℃下进行粉末-退火制备的。横截面显示了未烧结到一起的单个微米级晶粒。因此,与GC-Li6PS5Br相比,高制造压力不足以烧结微米级晶粒。这可能是由于单个晶粒的晶格取向不匹配,其阻碍了烧结过程。所以,在没有晶粒烧结的情况下,μC材料的压力-诱导致密化很可能不是完全不可逆的,因此制造压力的释放会导致在晶粒之间形成间隙/孔隙。这就要求,在测量离子电导率期间需要施加足够高的堆栈压力以封闭颗粒之间的这些间隙/孔隙。在图4d中样品的情况下,对颗粒在550 ℃下进行了额外的退火。横截面清楚地揭示了微米级晶粒的烧结,从而导致离子电导率显着增加。

d43d1262-096d-11ed-ba43-dac502259ad0.png

图4. 四种不同固态电解质颗粒的横截面图片:(a)98 MPa下制造的GC-Li6PS5Br颗粒,(b)392 MPa下制造的GC-Li6PS5Br颗粒,(c)550 ℃粉末退火和在392 MPa下制备的μC-Li6PS5Br,以及(d)550 ℃粉末退火、392 MPa下和550 ℃颗粒退火后的μC-Li6PS5Br。

d464abd8-096d-11ed-ba43-dac502259ad0.png

图5. 不同压力条件下非晶或玻璃陶瓷固态电解质形貌与微晶固态电解质形貌的示意图。此外,获得可靠电导率值的测量条件用绿色钩表示。

【总结】

总之,本研究结果强有力地表明,AM和GC材料中非晶相的存在允许无定形颗粒的压力-诱导烧结,从而使颗粒在制造压力下不可逆地致密化。根据研究结果,提出以下测量建议以获得可靠的电导率值,其接近SE颗粒的真实本体离子电导率(参见图5中的绿钩)。强的致密化效应意味着在400-500 MPa范围内应用高的制造压力是必不可少的。然而,由于致密化的不可逆性,必须专门施加相对较低的堆栈压力以确保良好的电极/颗粒接触。不使用溅射金属电极时所需的堆栈压力约为50-100MPa,使用溅射金属电极时约为5-10 MPa。

相比之下,通过施加高达约500 MPa的制造压力,在μC材料中不会发生微米级晶粒的烧结,而只能通过在550℃左右的高温下进行颗粒退火来实现。基于此,针对测量方式给出以下建议以获得可靠的μC材料电导率值(参见图5中的绿钩)。如果没有颗粒退火,即使金属电极溅射在样品面上,也至少需要200-250 MPa的堆栈压力。只有在颗粒退火和随后的金属电极溅射之后,5-10 MPa的低堆栈压力就足够了。

本研究结果也对SEs在ASSBs中的应用产生了影响。为了获得高能量密度,最好使用锂金属负极。在这种情况下,施加的堆栈压力应保持在远低于100 MPa。从图2中可以看出,AM/GC材料的离子电导率值和μC材料在此堆栈压力范围内相似,因为μC材料在没有颗粒退火的情况下无法发挥其全部潜力。这两种类型的材料都需要进一步探索和改进。仅在考虑文献中报道的最大离子电导率值时,AM/GC材料在ASSBs应用中的潜力要比想象的高。对于ASSBs的大规模生产,叠片电池似乎是最有前景的概念。在这里,SE隔膜和正极都含有粘结剂。粘结剂和正极活性材料颗粒的有限温度稳定性阻止了ASSB内部电解质颗粒的高温退火。因此,μC材料似乎不太可能在ASSBs中达到其最大离子电导率。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3078

    浏览量

    76483
  • 电解质
    +关注

    关注

    6

    文章

    728

    浏览量

    19679
  • 电导率
    +关注

    关注

    1

    文章

    130

    浏览量

    13710

原文标题:到底该如何可靠地测量固态电解质的离子电导率?

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    众多企业发布固态电池的布局动态

    尽管全固态电解质存在电导率低和电极、电解质界面稳定性差等问题尚未得到全面解决,但半固态电池作为通往全固态
    发表于 04-18 10:22 92次阅读
    众多企业发布<b class='flag-5'>固态</b>电池的布局动态

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温下都有明显的结晶性,这也是室温下固态聚合物电解质电导率远远低于液态电解质的原因。
    的头像 发表于 03-15 14:11 153次阅读
    请问聚合物<b class='flag-5'>电解质</b>是如何进行<b class='flag-5'>离子</b>传导的呢?

    不同类型的电池的电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池的电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成
    的头像 发表于 02-27 17:42 321次阅读

    水质电导率测量方式(盘点)

    水质电导率测量方式(盘点)
    的头像 发表于 01-29 13:58 506次阅读

    电导率单位ms/cm和us/cm怎么换算

    电导率是描述电解质溶液中离子传导能力的物理量。常用的电导率单位有毫西/厘米(ms/cm)和微西/厘米(us/cm)。要将毫西/厘米(ms/cm)转换为微西/厘米(us/cm),需要乘以
    的头像 发表于 01-25 15:52 8533次阅读

    固态电解质离子传输机理解析

    固态电解质离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置
    发表于 01-19 15:12 667次阅读
    <b class='flag-5'>固态</b><b class='flag-5'>电解质</b><b class='flag-5'>离子</b>传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 5643次阅读
    关于<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的基础知识

    电导率分析仪在环境科学中的应用

    电导率分析仪是一种重要的实验室设备,常应用于环境科学领域。它能够测量溶液中可移动离子导电的能力,为环境科学家提供有关物质浓度的关键信息。 在环境科学研究中,电导率分析仪常用于监测水体和
    的头像 发表于 11-09 10:22 254次阅读
    <b class='flag-5'>电导率</b>分析仪在环境科学中的应用

    电极式电导率的种类有哪些?

    装置。 根据测量原理与方法的不同,可以将电导率传感器分为电极型电导率传感器、电感型电导率传感器以及超声波电导率传感器。 电极型
    的头像 发表于 10-09 13:50 351次阅读

    什么海思电导率电导率原理解析

    电导率测量溶液传递或传输电流的能力。电导率这一术语来自欧姆定律,U = I•R;其中,电压(U)是电流(I)和电阻(R)的乘积;电阻值由电压/电流求得。当电压通过导体时,电子流动形成电流,电流值大小取决于导体电阻。
    的头像 发表于 09-15 12:36 733次阅读
    什么海思<b class='flag-5'>电导率</b>,<b class='flag-5'>电导率</b>原理解析

    全自动高性能电导率测量系统参考设计

    随着水质监测变得日益重要,人们开发了多种相关传感器和信号调理电路。水质的测量指标包括细菌数、pH值、化学成分、浊度和电导率。所有水溶液都在一定程度上导电。向纯水中添加电解质,例如盐、酸或碱,可以提高
    的头像 发表于 09-07 12:28 802次阅读
    全自动高性能<b class='flag-5'>电导率</b><b class='flag-5'>测量</b>系统参考设计

    新型固态电解质电导率和性价比三驾马车拉动全固态电池实用化

    开发合适的固态电解质是实现安全、高能量密度的全固态锂电池的第一步。理想情况下,固态电解质应在离子
    的头像 发表于 06-30 09:39 1115次阅读
    新型<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的<b class='flag-5'>电导率</b>和性价比三驾马车拉动全<b class='flag-5'>固态</b>电池实用化

    隔膜&amp;Binder离子电导率测试(S系列)

    离子电导率的测试都是通过制作全电池、对称电池或者小尺寸简易电池来进行评估测量,过程冗长复杂,影响因素多。对于快捷简单的评价方法及设备需求紧迫。
    的头像 发表于 06-26 10:08 489次阅读
    隔膜&amp;Binder<b class='flag-5'>离子</b><b class='flag-5'>电导率</b>测试(S系列)

    固态电解质电导性 (Solid系列)

    团体标准《固态锂电池用固态电解质性能要求及测试方法》指出固态电解质性能优劣的最主要性能指标为离子
    的头像 发表于 06-25 16:43 542次阅读
    <b class='flag-5'>固态</b><b class='flag-5'>电解质</b><b class='flag-5'>电导</b>性 (Solid系列)

    电导率,TDS和浓度在水质检测中的意义

    存在。通常在工业和环境应用中测量水的电导率,作为确定存在的离子数量的简单方式。 电导率常用单位 目前有几种不同的电导率
    的头像 发表于 06-19 14:41 622次阅读