0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ROD自动驾驶数据集

Nullmax纽劢 来源:纽劢科技 作者:纽劢科技 2022-07-08 16:53 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

自动驾驶领域,目标检测是一项富有挑战性的工作,尤其是一些出现频率较低的特殊目标,常因数据不足导致检测效果一般。对此,Nullmax的感知团队提出了一项针对少见目标检测的数据增强方法,并将相应数据集开源上线,为行业解决数据缺乏难题,应对长尾挑战提供研究参考。

对于自动驾驶车辆而言,准确识别各类目标和障碍物信息,可以有效保障行驶安全。因此感知系统既要检测一些路上常见的目标,比如车辆、行人、交通标识等,也要检测了一些少见的目标,比如锥形筒、交通警示桶、三角警示牌,等等。

这些检测少见目标的神经网络模型,和其他常见目标的检测模型一样,需要大量的标注数据进行训练。但这类目标出现概率很低,所以获取训练数据需要耗费大量的成本和时间。

因此,Nullmax的感知团队提出了一种基于交通场景信息的数据增强方法,通过Copy-Paste方式零成本生成高度逼真的训练样本,解决少见目标检测的数据难题。实验结果显示,Nullmax的新方法可以显著提升少见目标检测的任务效果。

同时,Nullmax建立了专用于自动驾驶少见目标检测的数据集Rare ObjectDataset(ROD),并在近期正式开源上线。ROD是该细分领域内的首个公开数据集,可以为目标检测、数据增强等方面的研究者提供稀缺的数据,研究特殊目标检测相关课题。

01

ROD自动驾驶数据集

Nullmax推出的ROD是一个多样化的真实世界数据集,当中包含大量训练图像和验证图像,并对小车、卡车、巴士、行人和自行车这5类常见目标进行了相应标注。

b8d27c9e-fc41-11ec-ba43-dac502259ad0.png

此外,ROD还提供了3类典型少见目标的掩膜,可用于少见目标检测和数据增强方法的研究,当中包括大约1000个锥形筒、100个交通警示桶和50个三角警示牌的掩膜数据。

ROD具有良好的数据多样性,覆盖了自动驾驶的不同场景。它包含了不同的道路级别,包括高速公路、快速路、城市街道以及乡村道路;不同的天气状况,比如晴天、阴天和雨天;以及不同的时间段,包括白天、傍晚和夜间。

ROD数据集现已开放下载:

https://nullmax-vision.github.io/

02

基于交通场景信息的数据增强

为了解决少见目标检测的数据难题,Nullmax的感知团队提出了结合交通场景的数据增强方法,通过简单有效的Copy-Paste增强方式生成逼真的训练数据,获得了出色的检测效果。

b91a9dc6-fc41-11ec-ba43-dac502259ad0.png

论文地址:

https://arxiv.org/pdf/2205.00376.pdf

通常来说,训练样本较少的目标检测任务可以看作是面向不平衡或长尾的数据集。有一些研究者,通过重采样训练数据和调整损失函数权重来解决这个问题,但这类方法对于专家经验较为依赖。

数据增强是解决数据稀缺问题的另一个研究方向,旨在通过最小代价生成大量带标注的训练样本。数据增强大致可以分为图像级增强和实例级增强,当包含特定目标类别的图像级训练数据达到一定数量时,前者是一种有效的方法;反之,则是实例级数据增强更为适合。

Nullmax采用的Copy-Paste方式,就是一种常见的实例级数据增强,它从源域复制特定目标类别的实例掩膜粘贴到目标域。通过系统性的研究,我们证明了在自动驾驶领域,通过结合交通场景信息的Copy-Paste数据增强方式,可以达到出色的少见目标检测性能。

具体来说,Nullmax利用源域的目标掩膜进行实例级变换,创建逼真的目标实例。并将交通场景信息用作全局的几何约束,将局部自适应的实例掩膜粘贴到目标图像上,生成训练数据。最后,再通过局部和全局的一致性保证训练数据的质量和真实度。

ba144efc-fc41-11ec-ba43-dac502259ad0.png

Nullmax提出的方法包括了3个主要环节:

(1) 收集目标实例掩膜和背景图像。在Nullmax的研究中,所有的背景图像来自于不同的真实交通场景。以锥形筒为例,它会涵盖不同的类型、颜色和大小。

(2) 通过理解交通场景信息,计算实例掩膜的粘贴位置。在背景图像上随机粘贴目标,效率低下,而且目标之间的关联可能与真实交通场景不符。Nullmax的方法以交通环境信息为约束,考虑相机内外参,进行实例掩膜的叠加。

(3) 对实例掩膜进行局部自适应转换。为了确保目标掩膜无缝粘贴到背景图像中,Nullmax使用了一系列局部自适应的数据增强策略:基于感知的景深,缩放粘贴对象;应用多种实例级混合策略,确保图像接缝尽量平滑;以及局部自适应的颜色变换(HSV)。

实验显示,Nullmax提出的数据增强方法在锥形筒检测中取得了出色效果,并且这一方法也能够推广至其他类型的少见物体检测任务当中。

此外,Nullmax也研究了各组件的效果,分析了方法中实例掩膜域、实例掩膜数量和强化训练图像数量的敏感性,证明了这一方法可为少见物体检测任务提供有效的训练图像。

03

加入我们

在自动驾驶领域,除常规的目标检测之外,数据增强在少见目标检测方面的应用鲜有人研究。我们提出的基于交通场景信息的Copy-Paste数据增强方法,可以简单高效地解决自动驾驶领域中因数据稀缺所带来的少见目标检测难题。

未来,我们希望通过增量训练对少见目标检测展开进一步研究。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据集
    +关注

    关注

    4

    文章

    1230

    浏览量

    26046
  • 自动驾驶
    +关注

    关注

    791

    文章

    14670

    浏览量

    176522

原文标题:Nullmax开源ROD自动驾驶数据集,「复制粘贴」解决少见目标检测难题

文章出处:【微信号:Nullmax,微信公众号:Nullmax纽劢】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    SimData:基于aiSim的高保真虚拟数据生成方案

    01前言在自动驾驶感知系统的研发过程中,模型的性能高度依赖于大规模、高质量的感知数据。目前业界常用的数据包括KITTI、nuScenes
    的头像 发表于 11-07 17:35 5121次阅读
    SimData:基于aiSim的高保真虚拟<b class='flag-5'>数据</b><b class='flag-5'>集</b>生成方案

    高程数据自动驾驶中有什么作用?

    最近有小伙伴让智驾最前沿聊聊自动驾驶高精度地图对高程数据的使用依赖,其实在聊这个话题之前,还是需要先知道高程数据是什么,在自动驾驶中到底有什么作用。
    的头像 发表于 11-02 13:44 1493次阅读

    不同等级的自动驾驶技术要求上有何不同?

    谈到自动驾驶,不可避免地会涉及到自动驾驶分级,美国汽车工程师学会(SAE)根据自动驾驶系统与人类驾驶员参与驾驶行为程度的不同,将
    的头像 发表于 10-18 10:17 2410次阅读

    什么是自动驾驶数据标注?如何好做数据标注?

    [首发于智驾最前沿微信公众号]在自动驾驶系统的开发过程中,数据标注是一项至关重要的工作。它不仅决定了模型训练的质量,也直接影响了车辆感知、决策与控制的性能表现。随着传感器种类和数据量的剧增,有效
    的头像 发表于 07-09 09:19 927次阅读
    什么是<b class='flag-5'>自动驾驶</b><b class='flag-5'>数据</b>标注?如何好做<b class='flag-5'>数据</b>标注?

    自动驾驶汽车是如何准确定位的?

    厘米级的定位精度,并能够实时响应环境变化。为此,自动驾驶系统通常采用多传感器融合的方式,将全球导航卫星系统(GNSS)、惯性测量单元(IMU)、激光雷达(LiDAR)、摄像头、超宽带(UWB)等多种传感器数据进行综合处理,通过算
    的头像 发表于 06-28 11:42 883次阅读
    <b class='flag-5'>自动驾驶</b>汽车是如何准确定位的?

    卡车、矿车的自动驾驶和乘用车的自动驾驶在技术要求上有何不同?

    [首发于智驾最前沿微信公众号]自动驾驶技术的发展,让组合辅助驾驶得到大量应用,但现在对于自动驾驶技术的宣传,普遍是在乘用车领域,而对于卡车、矿车的自动驾驶发展,却鲜有提及。其实在卡车、
    的头像 发表于 06-28 11:38 718次阅读
    卡车、矿车的<b class='flag-5'>自动驾驶</b>和乘用车的<b class='flag-5'>自动驾驶</b>在技术要求上有何不同?

    自动驾驶安全基石:ODD

    电子发烧友网综合报道 自动驾驶ODD(Operational Design Domain)即设计运行域,是指自动驾驶系统被设计为安全、有效运行的具体条件范围。它定义了自动驾驶汽车在哪些环境、场景
    的头像 发表于 05-19 03:52 5799次阅读

    新能源车软件单元测试深度解析:自动驾驶系统视角

    。 ‌自动驾驶软件的特殊性‌ ‌ 感知层: ‌激光雷达、摄像头等传感器数据处理算法的单元测试需覆盖极端场景。例如,激光雷达点云滤波算法在雨雪天气下的噪声抑制能力需通过边界测试验证。某厂商曾在测试中遗漏
    发表于 05-12 15:59

    东风汽车推出端到端自动驾驶开源数据

    近日,智能网联汽车智驾数据空间构建研讨会暨中汽协会智能网联汽车分会、数据分会2024年度会议在上海举办。会上,东风汽车发布行业规模最大、涵盖125万组高质量数据的端到端自动驾驶开源
    的头像 发表于 04-01 14:54 1023次阅读

    沃尔沃与Waabi携手开发自动驾驶卡车

    沃尔沃自动驾驶解决方案公司(V.A.S.)近日宣布与加拿大自动驾驶卡车技术公司Waabi建立合作伙伴关系,共同致力于自动驾驶卡车解决方案的研发。
    的头像 发表于 02-10 17:33 848次阅读

    自动驾驶的未来 - 了解如何无缝、可靠地完成驾驶

    作者:Don Horne 投稿人:DigiKey 北美编辑 自动驾驶组件的最新进展使许多驾驶员的“无需干预”成为现实。然而,许多驾驶员对真正自动驾驶汽车的安全性和可靠性仍然存在不情愿和
    的头像 发表于 01-26 21:52 904次阅读
    <b class='flag-5'>自动驾驶</b>的未来 - 了解如何无缝、可靠地完成<b class='flag-5'>驾驶</b>

    丰田、Aurora及大陆团携手NVIDIA,共推高度自动驾驶车型

    ,丰田将基于NVIDIA DRIVE AGX Orin™平台构建其下一代自动驾驶车型。同时,丰田还将采用经过安全认证的NVIDIA DriveOS操作系统,以确保这些车型的高级辅助驾驶功能具备功能安全保障。 Aurora作为自动驾驶
    的头像 发表于 01-13 10:54 919次阅读

    从《自动驾驶地图数据规范》聊高精地图在自动驾驶中的重要性

    自动驾驶地图作为L3级及以上自动驾驶技术的核心基础设施,其重要性随着智能驾驶技术的发展愈发显著。《自动驾驶地图数据规范》(DB11/T 20
    的头像 发表于 01-05 19:24 2868次阅读
    从《<b class='flag-5'>自动驾驶</b>地图<b class='flag-5'>数据</b>规范》聊高精地图在<b class='flag-5'>自动驾驶</b>中的重要性