0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NVIDIA Jetson-Xavier NX开发工具包的应

星星科技指导员 来源:NVIDIA 作者:NVIDIA 2022-04-17 17:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

NVIDIA 发布了基于 Jetson Xavier NX 模块的 NVIDIA Jetson Xavier NX 开发工具包 。 Jetson Xavier NX 以低于 15W 的功率,以紧凑的外形提供多达 21 台计算之巅,为边缘AI设备和自主机器带来服务器级性能和云原生工作流。

借助 Jetson Xavier NX 开发者工具包,您可以创建令人惊叹的人工智能驱动应用程序,并快速将深度神经网络( DNN )模型和流行的机器学习框架部署到该领域。 NVIDIA JetPack 4 . 4 开发者预览版 的初始软件支持包括 CUDA Toolkit 10 . 2 和 cuDNN 8 . 0 、 TensorRT 7 . 1 和 DeepStream 5 . 0 的预览版,以及用于机器学习的新 Docker 容器和预训练的 DNN 模型。

Jetson Xavier NX 基于 NVIDIA 开创性的 Xavier SoC ,可以并行运行多个复杂模型和多个高清传感器流。它包括以下功能:

具有 48 色张量的集成 NVIDIA volta384 核 Volta GPU

两个 NVIDIA 深度学习加速器引擎

七路 VLIW 视觉加速器

六核 NVIDIA Carmel 64 位 ARMv8 . 2 CPU

8-GB 128-bit LPDR4x

为了进一步简化边缘人工智能应用程序在生产环境中的部署, 预训练模型 将云原生技术引入 Jetson ,包括基于 Docker 的集装箱化,以及 Kubernetes 等硬件传递和编排服务,以及 NVIDIA NGC 注册表提供的 预训练模型 和 NVIDIA 。

Jetson Xavier NX 开发工具包

Jetson Xavier NX 开发工具包捆绑了一个开源的 参考载体板 和预装配的散热片/风扇,如图 2 所示,包括 19V 电源和基于 M.2 的 802.11 WLAN + BT 模块。除了可引导 microSD 卡插槽外,在载体底部还提供了一个 M . 2 Key-M NVMe 插槽,用于扩展高速存储。

因为 Xavier NX 模块向后兼容 Jetson Nano ( B01 ),它们的载体板有一些共同点 – 还包括双 MIPI CSI 摄像头连接器,以及四个 USB 3.1 端口HDMI 、 DisplayPort 、千兆以太网和一个 40 针 GPIO 头。

套件载体板的主要特性和接口如表 1 所示。有关 Jetson Xavier NX 计算模块的核心处理能力和规格的更多信息,请参阅 介绍世界上最小的人工智能超级计算机 Jetson Xavier NX post 和 Jetson Xavier NX 模块数据表 。

pYYBAGJb5NaAXUfCAAA_cWuBVTs916.png

表 1 . Jetson Xavier NX 开发者工具包载体板连接和接口。

Jetpack4 . 4 开发者预览版

NVIDIA JetPack SDK 包含在Jetson上构建AI应用程序的库、工具和核心操作系统。Jetpack4.4开发者预览版增加了对JetsonXavierNX的支持。它包括CUDA Toolkit 10.2以及cuDNN 8.0、TensorRT 7.1、DeepStream 5.0的预览版,以及用于部署云原生服务的NVIDIA容器运行时,以及表2中所示的其他组件。 为流行的机器学习框架(如TensorFlow和Pythorch)预构建的包安装程序也可以在 Jetson ZOO 获取 , 还有 NGC 上 JetPack 的新框架容器

poYBAGJb5OaAdxMsAAAv072LlmU636.png

表 2 . NVIDIA Jetpack4 . 4 开发者预览版 SDK 中可用的软件组件。

为 Jetson Xavier NX 、 Jetson AGX Xavier 、 Jetson TX1 / TX2 和 Jetson Nano 下载 Jetpack4 . 4 开发者预览版 。在收到新的 Jetson Xavier NX 开发工具包后,请按照 入门 指南中的说明,使用 JetPack 映像闪存 microSD 卡。

这个开发者预览版可以用来安装和运行 Jetson Xavier NX 开发者工具包并开始应用程序开发,而生产 Jetpack4 . 4SDK 计划在今年夏天晚些时候发布。安装 JetPack 之后,您可以跟随一些 AI 驱动的 Jetson 社区项目 。

深度学习推断基准

Jetson 可用于将广泛流行的 DNN 模型和 ML 框架部署到边缘,并具有高性能的推断,用于实时分类和目标检测、姿势估计、语义分割和自然语言处理( NLP )等任务。

JetPack SDK 和 NVIDIA CUDA -X 对 Jetson 和 NVIDIA 离散的 GPU 的共同支持意味着您可以轻松地将性能和尺寸、重量和功耗(交换)消耗降低到 5W ,而无需重新编写应用程序。图 3 显示了 Jetson Nano 上流行的视觉 DNN 的推断基准, Jetson TX2 、 Jetson Xavier NX 和 Jetson AGX Xavier 以及 Jetpack4 . 4 开发者预览版和 TensorRT 7 . 1 。这些结果可以通过从 GitHub 运行开放的 jetson_benchmarks 项目来复制。

poYBAGJb5DqAMtjKAADDhGorRsA658.png

图 3 。用 TensorRT 来推断 Jetson 家族中各种基于视觉的 DNN 模型的性能。

在 Jetson Xavier NX 和 Jetson AGX Xavier 上, NVIDIA 深度学习加速器( NVDLA )发动机和 GPU 同时以 INT8 精度运行,而在 Jetson Nano 和 Jetson TX2 上, GPU 以 FP16 精度运行。 Jetson Xavier NX 的性能比 Jetson TX2 高 10 倍,功耗相同,占地面积小 25% 。

在这些基准测试期间,每个平台都以最高性能运行( MAX-N 模式用于 Jetson AGX Xavier , Xavier NX 和 TX2 为 15W , Nano 为 10W )。这些基于视觉的任务的最大吞吐量是在批大小不超过 15ms 的延迟阈值的情况下获得的。 – 否则,对于平台超过此延迟阈值的网络,批处理大小为 1 。这种方法在实时应用程序的确定性低延迟需求和多流用例场景的最大性能之间提供了平衡。

我们还为 BERT 提供问题回答方面的基准测试结果。 BERT 是一种多功能架构,在多个 NLP 任务(包括 QA 、意图分类、情感分析、翻译、名称/实体识别、释义、推荐系统、自动完成)中得到了广泛的应用,还有更多。

TensorRT 传统上过于复杂,无法在本地部署机载边缘设备,尤其是 BERT 大型变体。然而,在 BERT 中包含 BERT 的张量核心优化后, BERT 可以很容易地在 Jetson Xavier NX 和 Jetson AGX Xavier 上运行。

将 BERT 部署到边缘对于低延迟、智能人机交互( HMI )和会话式人工智能非常有用,正如本文后面的多容器演示的 chatbot 部分一样,它也在本地执行自动语音识别( ASR ),而不依赖云连接。

runtime-performance-bert-1-625x754.png

图 4 。 BERT Base 和 BERT 在回答问题时的运行时性能很高,使用 NLP 任务的 50ms 延迟阈值。

图 4 显示了 BERT Base 和 BERT Large 在回答问题时的运行时性能,使用了 NLP 任务的 50ms 延迟阈值。这些结果是以每秒的顺序来衡量的,其中每一个文本序列都是 BERT 回答的一个查询或问题。 BERT 在 Jetson 上的性能为用户提供了近乎即时的反馈,延迟低至 5 . 9ms ,这使得 BERT 处理可以与视频等其他实时处理流同时执行。

云计算原生方法带到边缘

到目前为止,嵌入式和边缘设备的软件都是以单片系统的形式编写的。升级单片软件映像的复杂性增加了 bug 的风险,并使更新的节奏难以加快。对于具有人工智能的边缘设备来说,这一点尤其有问题,它需要频繁更新以维持快速的能力改进。现代对敏捷能力和零停机时间持续创新的期望要求改变嵌入式和边缘设备软件的开发和部署方式。

在边缘采用云本地的范例,如微服务、容器化和容器编排是前进的方向。

微服务架构、容器化和编排使云应用程序能够摆脱单一工作流的约束。现在, Jetson 正在将云原生转换思想引入 AI 边缘设备。

Jetson 是领先的人工智能边缘计算平台,拥有近 50 万开发者。它由 JetPack SDK 提供支持,该 SDK 具有与世界各地数据中心和工作站相同的 CUDA -X 加速计算堆栈和 NVIDIA 容器运行时。

通过 Jetson 的几个开发和部署容器、容器化框架和托管在 NVIDIA NGC 上的预先训练的 AI 模型,它可以作为 AI 应用程序开发的构建块。最新的 Jetson Xavier NX 以尽可能小的外形尺寸实现全功能、多模式人工智能应用。

我们欢迎使用云本地技术,使客户具有扩展业务所需的生命周期灵活性。可扩展软件开发加快了上市时间。为什么?因为当您不必同时更新其他应用程序组件时,更新产品生命周期的过程会变得不那么繁重。

多容器演示

Jetson Xavier NX 的 NVIDIA 多容器演示 展示了使用云本地方法开发和部署服务机器人 AI 应用程序的过程。服务机器人是一种自主机器人,通常与零售、酒店、医疗保健或仓库中的人互动。

视频。 Jetson Xavier NX 的云原生多容器演示,并行运行七个深度学习模型。

考虑一个服务机器人,它的目的是通过与购物者交互来改善零售百货公司的客户服务。机器人只有在能够执行包括人体识别、交互检测、人体姿态检测、语音检测和自然语言处理在内的许多计算任务时,才能为客户的查询提供有用的答案。机器人必须运行支持这些功能所需的多个人工智能模型。

有了云原生方法,人工智能模型可以独立开发,包含所有依赖项的容器化,并部署到任何 Jetson 设备上。

该演示程序在 Jetson Xavier NX 上同时运行四个容器,具有七个深度学习模型,包括姿势估计、面部和凝视检测、人物计数、语音识别和 BERT 问答。结果是,这些服务构建块容器可以轻松地修改和重新部署,而不会造成中断,从而提供零停机时间和无缝更新体验。

在没有牺牲所有数据流的计算能力的情况下,[zd-9]提供了一个传感器的计算能力。您可以使用 NGC 上托管的容器从 NVIDIA-AI-IOT/jetson-cloudnative-demo GitHub repo 下载演示。

在边缘计算领域实现下一个飞跃

计算性能、紧凑、省电的外形和全面的软件支持使 Jetson Xavier NX Developer Kit 成为创建高级 AI 驱动应用程序并部署到边缘的理想平台。

关于作者

达斯汀是 NVIDIA 的 Jetson 团队的开发人员布道者。 Dustin 拥有机器人和嵌入式系统方面的背景,他乐于在社区中提供帮助,并与 Jetson 一起参与项目。

Suhas Sheshadri 是 NVIDIA 的产品经理,专注于 Jetson 软件。此前,他曾在 NVIDIA 与自主驾驶团队合作,为 NVIDIA 驱动平台优化系统软件。在业余时间,苏哈斯喜欢读量子物理学和博弈论方面的书籍。

Sarah Todd 是 NVIDIA 嵌入式团队的营销经理。 Sarah 对推动人工智能应用程序实现真正的解决方案非常感兴趣,她负责边缘技术的营销,包括与 Jetson 平台相关的软件和硬件、自主机器和 NVIDIA 机器人技术。

Dustin Franklin 是 NVIDIA 的 Jetson 团队的开发人员布道者。 Dustin 拥有机器人和嵌入式系统方面的背景,他乐于在社区中提供帮助,并与 Jetson 一起参与项目。你可以在 NVIDIA Developer Forums 或 Github 上找到他。

Suhas Sheshadri 是 NVIDIA 的产品经理,专注于 Jetson 软件。此前,他曾在 NVIDIA 与自主驾驶团队合作,为 NVIDIA 驱动平台优化系统软件。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54368

    浏览量

    786022
  • NVIDIA
    +关注

    关注

    14

    文章

    5496

    浏览量

    109087
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NVIDIA Jetson AGX Thor Developer Kit开发环境配置指南

    NVIDIA Jetson AGX Thor 专为物理 AI 打造,与上一代产品 NVIDIA Jetson AGX Orin 相比,生成式 AI 性能最高提升至 5 倍。通过发布后的
    的头像 发表于 11-08 09:55 5986次阅读
    <b class='flag-5'>NVIDIA</b> <b class='flag-5'>Jetson</b> AGX Thor Developer Kit<b class='flag-5'>开发</b>环境配置指南

    eForce无线通信软件开发工具包兼容WLAN模块WKR612AA1

    近期,eForce株式会社宣布,其面向嵌入式设备的无线通信软件开发工具包(μC3-WLAN SDK)现已兼容 KAGA FEI 生产的无线局域网(WLAN)模块"WKR612AA1"。
    的头像 发表于 09-24 15:16 721次阅读

    NVIDIA Jetson AGX Thor开发者套件重磅发布

    开发者与未来创造者们,准备好迎接边缘AI的史诗级革新了吗?NVIDIA以颠覆性技术再次突破极限,正式推出Jetson AGX Thor开发者套件!作为继传奇产品
    的头像 发表于 08-28 14:31 1224次阅读

    NVIDIA Jetson AGX Thor开发者套件概述

    NVIDIA Jetson AGX Thor 开发者套件为您提供出色的性能和可扩展性。它由 NVIDIA Blackwell GPU和128 GB 显存提供动力支持,提供高达 2070
    的头像 发表于 08-11 15:03 1596次阅读

    NVIDIA Jetson + Isaac SDK 人形机器人方案全面解析

    (TOPS) 工作功耗 适用场景 Jetson Nano 128-core Maxwell Quad A57 0.5 5~10W 教育型、初级移动机器人 Jetson Xavier NX
    的头像 发表于 07-30 16:12 1844次阅读

    Jetson平台核心组件BOM清单概览

    Jetson Xavier NXJetson AGX Orin)的核心BOM清单进行梳理。需要注意的是,NVIDIA官方并
    的头像 发表于 07-30 16:11 2434次阅读

    NVIDIA Jetson + Isaac SDK 在人形机器人领域的方案详解

    NVIDIA Jetson + Isaac SDK 在人形机器人领域的 方案详解 ,涵盖芯片型号、软件平台、开发工具链、应用场景与典型客户等。 一、方案概述:Jetson + Isaa
    的头像 发表于 07-30 16:05 3127次阅读

    IQM 宣布 Resonance 量子云平台重大升级,推出全新软件开发工具包

    进程,并为终端用户带来性能强大的新一代量子系统。 此次升级将 Qrisp——一个源自德国弗劳恩霍夫 FOKUS 研究所的项目——设为平台新的默认软件开发工具包 (SDK)。Qrisp 为量子开发
    的头像 发表于 07-11 11:03 452次阅读

    将MTi设备与NVIDIA Jetson进行接口

    XsensMTI设备连接到NVIDIAJetson硬件,以及如何使用我们的MT软件开发工具包(MTSDK)轻松与之通信NVIDIAJetson运行在ARMCortexCPU上,这意味着它与常规
    的头像 发表于 05-22 17:00 429次阅读
    将MTi设备与<b class='flag-5'>NVIDIA</b> <b class='flag-5'>Jetson</b>进行接口

    Made with KiCad(126):Antmicro OV5640 双摄像头子板

    Jetson Nano、Jetson TX2 NXJetson Xavier NX 系统模块
    发表于 05-12 18:13

    rk3568开发工具

    rk3568开发工具
    发表于 04-16 17:03 7次下载

    AI开发工具分类与功能

    当下,AI开发工具不仅简化了AI开发的复杂流程,还提高了开发效率,推动了AI技术的广泛应用。下面,AI部落小编为大家介绍AI开发工具的分类及其功能。
    的头像 发表于 04-12 10:12 1042次阅读

    云计算开发工具包的功能

    随着云计算技术的不断成熟,越来越多的企业开始将应用和服务迁移到云端,以享受弹性计算资源、高可用性和成本效益等优势。为了加速这一进程,云计算服务提供商推出了各种开发工具包。下面,AI部落小编带您了解云计算开发工具包的主要功能。
    的头像 发表于 02-21 11:02 553次阅读

    Labview声音和振动工具包示例文件Sound Level

    Labview 声音和振动工具包示例文件,声压测试,有模拟和DAQ两个文件。
    发表于 01-05 09:15 5次下载

    最新Simplicity SDK软件开发工具包发布

    最新的SimplicitySDK软件开发工具包已经发布!此次更新针对SiliconLabs(芯科科技)第二代无线开发平台带来了包括蓝牙6.0的信道探测(Channel Sounding
    的头像 发表于 12-24 09:47 1465次阅读