0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于NVIDIA Jetson的机器人面临的结果、系统和挑战

星星科技指导员 来源:NVIDIA 作者:Mitesh Patel 2022-04-13 09:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

进行高精度的实时推理是一项具有挑战性的任务,尤其是在能见度较低的环境中。借助 NVIDIA Jetson 嵌入式平台,最近结束的国防高级研究计划局( DARPA )地下挑战赛( SubT )团队能够以高精度和高吞吐量检测感兴趣的物体。在这篇文章中,我们将介绍在系统竞赛的最后一站中团队所面临的结果、系统和挑战。

SubT 挑战赛是由 DARPA 组织和协调的国际机器人竞赛。该竞赛鼓励研究人员为机器人开发新的方法来绘制、导航和搜索环境,这些环境会带来各种挑战,例如能见度低、存在危险、地图未知或通信基础设施差。

2019 冠状病毒疾病包括三个初步的电路事件:隧道电路、城市电路和洞穴电路(由于 COVID-19 大流行而取消),以及最终的综合挑战课程。每个赛道和决赛都在不同的环境和不同的地形中举行。据活动组织者介绍,比赛在 3 个不同的阶段举行, 2021 九月在 KY 。路易斯维尔举行了最后一场比赛。

SubT Challenge 的竞争对手利用 NVIDIA 技术满足其硬件和软件需求。团队使用桌面/服务器 GPU 来训练使用 NVIDIA Jetson 嵌入式平台部署在机器人上的模型,以实时检测感兴趣的工件和对象,这是确定获胜团队的主要标准。七分之五的竞争对手也使用 Jetson 平台进行实时目标检测。

次级挑战

SubT 挑战的灵感来自于第一响应者在搜索救援行动或灾难响应期间面临的真实场景。

通过本次比赛开发的最先进的方法将有助于降低搜索救援人员和急救人员在探索未知地下环境时的伤亡风险。此外,自动机器人将协助工作人员探索环境,寻找幸存者、感兴趣的物体,并进入对人类有风险的地点。

图 1 。 DARPA 地下挑战探索了绘制、导航和搜索复杂地下环境的创新方法和新技术。 – 图片由 DARPA 提供 。

技术挑战

这场比赛包含了各种技术挑战,比如应对一些机器人可能无法轻松操纵的未知、无结构和不平的地形。

这些环境通常没有任何与中央司令部通信的基础设施。从感知角度来看,这些环境的可见度很低,机器人必须找到感兴趣的工件和物体。

竞争团队的任务是通过开发新型传感器融合方法,以及开发新的或修改现有机器人平台来应对这些挑战,这些平台具有不同的定位和检测感兴趣对象的能力。

CERBERUS 团队

CERBERUS 团队(用于地下环境中自主探索的协作步行和飞行机器人)是世界各地多所大学和工业组织的联合财团。

该团队与四个名为 ANYmal 的四足机器人、五个主要由内部制造、具有可变大小和有效载荷能力的无人机,以及一个超级巨型机器人形式的漫游机器人一起参加了比赛。在比赛决赛中,该团队最终使用了四个 ANYmal 机器人和超级巨型机器人进行探索和人工制品检测。

每个 ANYmal 机器人都配备了两台基于 CPU 的计算机和一台 NVIDIA Jetson AGX Xavier 。漫游者机器人配备了 NVIDIA GTX 1070 GPU 。

CERBERUS 团队使用改进版的 You Only Look One ( YOLO )模型进行目标检测。该模型使用两个 NVIDIA RTX 3090 GPU 在 40000 个标记图像上进行训练。

在部署到 Jetson 上进行实时推理之前,使用 TensorRT 对训练后的模型进行了进一步优化。 Jetson AGX Xavier 能够以 20 赫兹的集体频率进行推理。在比赛总决赛中, CERBERUS 团队率先发现了环境中 40 件文物中的 23 件,夺得了第一名。

CERBERUS 团队还使用 GPU 绘制地形高程图,并训练 ANYmal 四足机器人的移动策略控制器。使用 Jetson AGX Xavier 实时绘制高程图。 ANYmal 机器人在崎岖地形下的移动策略训练是使用桌面 GPU 离线完成的。

团队联袂主演

在南加利福尼亚州 NASA 喷气推进实验室( JPL )的研究人员以及其他大学和工业合作者的带领下,团队合作地下自主机器人( Co STAR )在 2020 年的比赛中获胜,该比赛专注于探索复杂的地下城市环境。

他们还成功地参加了 2021 届混合人工和自然环境的比赛,排名第五。联袂主演的团队带着四个位置、四个哈士奇机器人和两架无人机参加了比赛。

在最后一轮中,由于意外的硬件问题,团队最终使用了一个 Spot 和三个哈士奇机器人。每个机器人都配备了一台基于 CPU 的计算机以及一台 NVIDIA Jetson AGX Xavier 。

在目标检测方面,该团队使用 RGB 和热图像。他们使用 YOLO v5 模型的中型变体来处理高分辨率图像以进行实时推断。该团队训练了两种不同的模型,对捕获的 RGB 和热图像进行推理。

基于图像的模型使用约 54000 个标记帧进行训练,而热图像模型使用约 2400 个标记图像进行训练。为了训练模型在他们的定制数据集上,团队 Co Star 使用了在 COCO 数据集上的预训练的 YOLO V5 模型,并使用NVIDIA 传输学习工具包(称为 TAO 工具包)进行传输学习。

使用两个内部部署的 NVIDIA A100 GPU 和一个由八个 V100 GPU 组成的 AWS 实例对模型进行训练。在 Jetson AGX Xavier 上部署模型之前,团队使用 TensorRT 修剪模型。

使用这种设置,团队合作星能够在 28 赫兹的频率下对五台 RealSense 相机接收到的 RGB 图像和一台热敏相机接收到的图像进行推断。在最后一次运行中,机器人能够检测到指定区域中存在的所有 13 个工件。由于部署现场意外的硬件问题导致部署延迟,因此勘探时间有限。

配备 NVIDIA Jetson 平台和NVIDIA GPU 硬件,在 DARPA SUT 事件中竞争的团队能够有效地训练模型以进行实时推理,解决地下环境所带来的挑战与精确的目标检测。

关于作者

Mitesh Patel 是 NVIDIA 的开发者关系经理,他与高等教育研究人员合作,使用 NVIDIA SDK 和平台执行他们的想法。在加入NVIDIA 之前,他是富士施乐帕洛阿尔托实验室有限公司的高级研究科学家,致力于开发室内本地化技术,用于医院的资产跟踪和制造设施的送货车跟踪等应用。 Mitesh 于 2014 在澳大利亚悉尼科技大学获得了来自自动系统中心( CAS )的机器人学博士学位。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5496

    浏览量

    109091
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5099

    浏览量

    134461
  • 计算机
    +关注

    关注

    19

    文章

    7764

    浏览量

    92682
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AGIROS开源社区Meetup上海站圆满落幕,RT-Thread睿赛德分享核心技术赋能机器人开发|新闻速递

    ”主题演讲,为现场开发者与行业人士解析机器人开发的核心技术突破。叶昌博士在演讲中指出,当前人形机器人面临“计算性与实时性需求并存”的核心挑战,传统架构存在可靠性低、
    的头像 发表于 09-22 21:25 494次阅读
    AGIROS开源社区Meetup上海站圆满落幕,RT-Thread睿赛德分享核心技术赋能<b class='flag-5'>机器人</b>开发|新闻速递

    从扫地机器人到割草机器人,中微半导芯片级方案赋能电机极限挑战

    望突破80亿美元,年复合增长率超20%。随着人们生活品质提升,对庭院自动化管理的需求日益旺盛,割草机器人凭借其便捷高效的特点,逐渐成为众多家庭庭院护理的标配,走进千家万户。   然而,在市场快速扩张的背后,割草机器人面临着严苛的户外作业
    的头像 发表于 09-22 02:41 8240次阅读

    ADI借助NVIDIA Jetson Thor平台加速人形机器人研发进程

    当前,人形机器人正逐步迈向实际应用部署阶段,其落地节奏取决于物理智能与实时推理能力的发展。随着NVIDIA Jetson Thor平台的正式面市,Analog Devices, Inc. (ADI)将进一步加速人形
    的头像 发表于 08-29 14:07 2643次阅读

    NVIDIA Jetson Thor实现机器人实时推理能力的巨大飞跃

    这款专为全球数百万机器人开发者设计、基于 NVIDIA Blackwell 的机器人计算机,可提供高达 2,070 FP4 TFLOPS 的计算性能,能高效应对代理式 AI、高速传感器数据处理、通用
    的头像 发表于 08-27 12:43 1984次阅读

    NVIDIA三台计算机解决方案如何协同助力机器人技术

    NVIDIA DGX、基于 NVIDIA RTX PRO 服务器的 Omniverse 和 Cosmos,以及 Jetson AGX Thor,正全面加速从人形机器人
    的头像 发表于 08-27 11:48 2004次阅读

    基于 NVIDIA Blackwell 的 Jetson Thor 现已发售,加速通用机器人时代的到来

    ·专为物理 AI 和机器人打造的机器人计算机 NVIDIA Jetson AGX Thor 开发者套件和量产级模组,现已发售。 ·超过 200 万开发者正在使用
    发表于 08-26 09:28 1198次阅读
    基于 <b class='flag-5'>NVIDIA</b> Blackwell 的 <b class='flag-5'>Jetson</b> Thor 现已发售,加速通用<b class='flag-5'>机器人</b>时代的到来

    利用NVIDIA Cosmos模型训练通用机器人

    机器人领域的一大核心挑战在于如何让机器人掌握新任务,而无需针对每个新任务和环境耗费大量精力收集和标注数据集。NVIDIA 的最新研究方案通过生成式 AI、世界基础模型(如
    的头像 发表于 08-05 16:22 1742次阅读
    利用<b class='flag-5'>NVIDIA</b> Cosmos模型训练通用<b class='flag-5'>机器人</b>

    NVIDIA Jetson + Isaac SDK 人形机器人方案全面解析

    NVIDIA Jetson + Isaac SDK 人形机器人方案全面解析 一、方案概述 Jetson 硬件平台 :提供 AI + GPU 运算能力,配合多传感器、视觉、传动控制体系
    的头像 发表于 07-30 16:12 1844次阅读

    NVIDIA Jetson + Isaac SDK 在人形机器人领域的方案详解

    NVIDIA Jetson + Isaac SDK 在人形机器人领域的 方案详解 ,涵盖芯片型号、软件平台、开发工具链、应用场景与典型客户等。 一、方案概述:Jetson + Isaa
    的头像 发表于 07-30 16:05 3128次阅读

    通过NVIDIA Cosmos模型增强机器人学习

    通用机器人的时代已经到来,这得益于机械电子技术和机器人 AI 基础模型的进步。但目前机器人技术的发展仍面临一个关键挑战
    的头像 发表于 07-14 11:49 761次阅读
    通过<b class='flag-5'>NVIDIA</b> Cosmos模型增强<b class='flag-5'>机器人</b>学习

    NVIDIA技术助力欧洲厂商推出机器人系统与平台

    基于 NVIDIA 安全的全栈机器人开发平台,Agile Robots、Humanoid、Neura Robotics、Universal Robots、Vorwerk 和 Wandelbots 等公司推出 NVIDIA 加速的
    的头像 发表于 06-16 13:54 1172次阅读

    盘点#机器人开发平台

    图,电子技术资料网站具身智能机器人****开发平台——Fibot广和通发布机器人开发平台-电子发烧友网NVIDIA Isaac 英伟达综合性机器人开发平台
    发表于 05-13 15:02

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主
    发表于 01-04 19:22

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    影响与发展,提供了全球及国内行业趋势的见解。书中详细讨论了这一新兴领域面临的诸多挑战,从应用的不确定性、昂贵的成本到伦理问题,为读者呈现了当前形势的现实视角。 接下来,书中深入探讨了具身智能机器人的历史
    发表于 12-28 21:12

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景中,协作机器人面临的主要挑战是快速适应新工艺流程。具身智能通过在线学习
    发表于 12-24 15:03