0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氮化镓(GaN)是否将在所有应用中取代砷化镓(GaAs)

Microchip微芯 来源:Microchip微芯 作者:Microchip微芯 2022-03-22 13:01 次阅读

之前的砷化镓(GaAs)和横向扩散金属氧化物半导体(LDMOS)一样,氮化镓(GaN)是一项革命性技术,在实现未来的射频微波和毫米波系统方面能够发挥巨大作用。不过,它并不是一剂“灵丹妙药”,其他技术仍然可以发挥重要作用。

当氮化镓(GaN)射频功率晶体管于2000年代中期在伊拉克和阿富汗战场上应用到反简易爆炸物装置干扰器时,这项技术还处于起步阶段。如今,在从国防到卫星通信5G的各大市场中,GaN分立器件和单片式微波集成电路(MMIC)俨然已成为砷化镓(GaAs)的强大竞争对手。这种情况有着充分的理由:GaN的功率密度极高,可以在给定的裸片面积上产生比用于产生射频功率的任何其他半导体技术更高的射频功率。此外,其工作电压为GaAs器件的五倍,工作电流为GaAs器件的两倍,10 GHz以上时的功率附加效率更高,而且支持在高温下工作。

那么,这是否意味着GaN将在所有应用中取代GaAs?答案是否定的,这就是Microchip制造分立式以及GaN和GaAs MMIC产品并拥有业内最丰富的射频半导体产品之一的原因,这些产品涵盖从低噪声放大器到前端模块、射频二极管、交换芯片、电压可变衰减器、SAW和MEMS振荡器以及将单片机与射频收发器相结合的集成模块(Wi-Fi MCU)。

要了解上述所有技术最适合的应用,有必要说明每种技术的优势。例如,GaAs仍然是最通用的半导体材料,因为其应用范围广泛,从功率放大器到混频器、交换芯片、衰减器、调制器和限流器以及太阳能电池、激光二极管和LED。如果不使用GaAs,某些应用将无法实现。

从20世纪80年代后期,GaAs开始用于对有源相控阵雷达进行现代化改造,可以说这成就了智能手机和其他联网设备。GaAs器件还用于电缆系统分配放大器、微波点对点链路和许多其他最高90 GHz的射频应用。不过,尽管可以使用GaAs构建相对高功率的放大器模块,但采用GaN时,只需更少的模块即可实现更高的射频输出功率,而这一输出功率将在未来几年内继续提高。

公平地说,值得注意的一点是,LDMOS技术也会随着时间的推移不断发展,其优势体现在超高的耐用性上,一些分立LDMOS晶体管能够在大于65:1的阻抗失配下运行而不会发生降级或损坏,而GaN和GaAs目前的阻抗失配则限制在20:1左右。这些分立LDMOS晶体管还可以产生最高近2 kW的射频输出功率,不过频率限制在4 GHz左右,因此,尽管它们在未来几年仍然是L和S频段雷达、广播发射器、医学成像系统、工业加热和干燥应用中产生射频功率的关键器件,但最终都会被GaN取代,因为后者的工作范围可延伸到毫米波区域。

如前面所述,GaN的最大优势之一在于其功率密度极高,因此能够以比硅或GaAs小得多的栅宽产生极高的射频功率。这样便可在一个极为小巧的器件中产生十分惊人的射频功率,因此GaN非常适合新一代有源电子控制阵列(AESA)雷达和许多其他应用。GaN的潜能才刚刚被发掘,未来至少可以实现20 W/mm的功率密度。

当然,能否实现取决于将热量通过基板从裸片向外耗散到散热片和散热器(也可能是外部冷却子系统)的速度和效率。尽管碳化硅(SiC)基板目前已十分常见,但金刚石或铝-金刚石金属基复合材料可能会更加普遍,因为金刚石是地球上所有材料中导热率最高的物质。

与之前的GaAs和LDMOS一样,GaN是一项革命性技术,在实现未来的射频、微波和毫米波系统方面能够发挥巨大作用。不过,GaN不是一剂“灵丹妙药”,GaAs仍将作为未来许多年的关键技术。Microchip并未忘记这一事实,因此仍致力于优化GaAs的性能,同时还将在未来扩展其GaN产品组合。

原文标题:专家博文《氮化镓性能卓越,但它并非惟一选择》

文章出处:【微信公众号:Microchip微芯】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    327

    文章

    24489

    浏览量

    202030
  • GaAs
    +关注

    关注

    2

    文章

    506

    浏览量

    22659
  • 砷化镓
    +关注

    关注

    3

    文章

    156

    浏览量

    18969

原文标题:专家博文《氮化镓性能卓越,但它并非惟一选择》

文章出处:【微信号:MicrochipTechnology,微信公众号:Microchip微芯】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    氮化发展评估

    氮化的性能优势曾经一度因高成本而被抵消。最近,氮化凭借在硅基氮化技术、供应链优化、器件封
    发表于 08-15 17:47

    MACOM:硅基氮化器件成本优势

    ,尤其是2010年以后,MACOM开始通过频繁收购来扩充产品线与进入新市场,如今的MACOM拥有包括氮化GaN)、硅锗(SiGe)、磷化铟(InP)、CMOS、
    发表于 09-04 15:02

    什么阻碍氮化器件的发展

    =rgb(51, 51, 51) !important]射频氮化技术是5G的绝配,基站功放使用氮化氮化
    发表于 07-08 04:20

    什么是氮化GaN)?

    氮化南征北战纵横半导体市场多年,无论是吊打碳化硅,还是PK氮化
    发表于 07-31 06:53

    氮化GaN 来到我们身边竟如此的快

    被誉为第三代半导体材料的氮化GaN。早期的氮化材料被运用到通信、军工领域,随着技术的进步以及人们的需求,
    发表于 03-18 22:34

    氮化GaN接替硅支持高能效高频电源设计方案

    在所有电力电子应用,功率密度是关键指标之一,这主要由更高能效和更高开关频率驱动。随着基于硅的技术接近其发展极限,设计工程师现在正寻求宽禁带技术如氮化
    发表于 10-28 06:01

    CMPA801B025F氮化GaN)高电子迁移率 基于晶体管

    Cree的CMPA801B025是氮化GaN)高电子迁移率基于晶体管(HEMT)的单片微波集成电路(MMIC)。 氮化与硅或
    发表于 12-03 11:46

    CGHV96100F2氮化GaN)高电子迁移率晶体管

    `Cree的CGHV96100F2是氮化GaN)高电子迁移率晶体管(HEMT)在碳化硅(SiC)基板上。 该GaN内部匹配(IM)FET与其他技术相比,具有出色的功率附加效率。
    发表于 12-03 11:49

    请问氮化GaN是什么?

    氮化GaN是什么?
    发表于 06-16 08:03

    氮化充电器

    是什么氮化GaN)是氮和化合物,具体半导体特性,早期应用于发光二极管,它与常用的硅属于同一元素周期族,硬度高熔点高稳定性强。
    发表于 09-14 08:35

    什么是氮化GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用,传统硅器件在能量转换方面,已经达
    发表于 06-15 15:47

    为什么氮化比硅更好?

    ,在半桥拓扑结构结合了频率、密度和效率优势。如有源钳位反激式、图腾柱PFC和LLC。随着从硬开关拓扑结构到软开关拓扑结构的改变,初级FET的一般损耗方程可以最小,从而提升至10倍的高频率。 氮化
    发表于 06-15 15:53

    有关氮化半导体的常见错误观念

    氮化(GaN)是一种全新的使能技术,可实现更高的效率、显着减小系统尺寸、更轻和于应用取得硅器件无法实现的性能。那么,为什么关于氮化
    发表于 06-25 14:17

    氮化芯片未来会取代硅芯片吗?

    2000 年代初就已开始,但 GaN 晶体管仍处于起步阶段。 毫无疑问,它们将在未来十年内取代功率应用的硅晶体管,但距离用于数据处理应用还很远。 Keep Tops
    发表于 08-21 17:06