0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用标准湿法清洁从EUV掩模空白中去除纳米颗粒

华林科纳半导体设备制造 来源:华林科纳半导体设备制造 作者:华林科纳半导体设 2022-02-17 14:59 次阅读

摘要

准备好无缺陷掩模供应是将极端紫外线光刻(EUVL)应用于32纳米半间距(HP)及更大的大批量半导体制造的关键挑战之一。根据ITRS在2008年更新的数据,对于32纳米的惠普,需要去除的缺陷尺寸为25纳米。另一方面,在2008年发表的报告中,对于32纳米高压线和空间图案,EUV掩模上吸收体缺陷的临界缺陷尺寸被描述为大约24纳米,这意味着必须去除具有相同尺寸的颗粒。在如此严格的缺陷要求下,清洁工艺必须发挥关键作用,以去除这些微小的颗粒缺陷。然而,由于缺乏薄膜保护,EUV掩模清洗面临着与反射掩模结构、诸如钌(Ru)覆盖层的新材料以及更频繁的清洗相关的独特挑战。因此,它必须足够温和,不会损坏EUV掩模上的脆弱图案和表面,特别是非常薄的钌覆盖层。竞争的需求使得EUV口罩清洁更具挑战性。

本文报告了使用灵敏度为80纳米的空白检测工具M1350对清洁相关问题的综合评估。在本文中,我们使用灵敏度为50纳米的新型空白检测工具M7360,将我们的努力扩展到更小的缺陷。

介绍

湿法清洗过程中残留在表面的小颗粒(所谓的添加剂)是扩展当前基于SPM(硫酸和过氧化氢混合物)的清洗过程以满足EUV要求的主要问题。为了应对这一挑战,我们评估了各种清洁工艺和化学物质的效果,并成功地在EUV掩模坯体上实现了零清洁添加和100%的颗粒去除效率。这些数据是使用80纳米灵敏度的Lasertec M1350获得的。今年,我们开始使用第二代检测工具 M7360对清洁性能进行评估,该工具在EUV掩模坯件上的检测灵敏度为50纳米二氧化硅等效粒径缺陷。这种高灵敏度的检测工具使我们能够改进清洁过程,并认识到在清洁更小颗粒方面的进一步挑战,这些颗粒以前在M1350上是看不到的.在本文中,我们介绍了我们使用M7360和其他计量工具对较小颗粒的清洁性能和加法器分析的最新结果。

实验

本研究采用的清洗工艺基于标准的SPM和SC1化学。我们选择了处理过程中带有颗粒和污染物的测试样品,以代表实际使用过程中更真实的口罩污染情况。为了量化清洁性能,使用清洁前后M1350和M7360的缺陷图计算清洁过程中的颗粒去除效率(PRE)和加法器。在我们的指标中,PRE定义为PRE= (n1 - n2) /n1×100.这里,n1是处理过程中添加的粒子数,n2是n1中未移动的粒子数.另一方面,通过比较清洁前后的缺陷位置来计算清洁加法器。

用M7360标记一些缺陷,以表征缺陷尺寸和成分。用原子力显微镜(AFM)测量高度,用扫描电子显微镜(SEM)测量横向尺寸,用俄歇电子能谱(AES)测量成分,对缺陷进行表征。由于我们针对AES分析的缺陷尺寸非常小,因此我们通过仔细比较作为缺陷附近参考的光谱来确定缺陷成分。

结果和讨论

本节使用M1350和M7360评估了处理颗粒和清洁加法器的性能,以量化整体清洁性能。图1(a)中M1350测量的缺陷图分别显示了添加的处理颗粒和当前记录(POR)清洗过程后的剩余颗粒。从这些评估中,我们得出结论,我们目前的POR清洁工艺能够清洁50纳米的颗粒,并且没有大于80纳米的添加剂。然而,对于更小的缺陷,我们认为工艺加法器是当前POR清洗工艺中需要解决的关键问题。

本节研究描述的下一步是我们在清洗后发现的添加物。表征的目的是确定加法器的来源,并开发减少它们的方法。图3显示了根据原子力显微镜图像确定的加法器尺寸(面积和高度)的散点图。

在分段测试中,整个清洗过程分为三个独特的步骤,并针对该步骤中使用的相应化学品对加法器进行评估。这三个步骤是SPM化学,热去离子水冲洗和SC1化学过程。M7360测量的加法器图如图6所示.观察到最多的加法器是SPM化学过程,其次是热水过程和SC1化学过程。这些结果表明,SPM化学导致大多数加法器。

如前所述,我们确定加法器为No。1。 EUV口罩清洁过程中的挑战。如上所述,我们将加法器源隔离为SPM化学步骤。下一步是消除加法器。理想情况下,在运送到使用地点之前,人们希望过滤掉化学物质中的所有颗粒。我们解决加法器问题的方法是双重的;一种是通过过滤从SPM化学品中去除颗粒,另一种是防止颗粒粘附在表面。事实上,我们通过改进过滤系统,在M1350检测的基础上,实现了大于80 nm缺陷的零加法器最终清洗。然而,基于M7360检查,相同的清洗过程产生了约60个尺寸小于80纳米的加法器。对于液体化学过滤来说,保持无颗粒是极其困难的,尤其是对于小颗粒。

使用标准湿法清洁从EUV掩模空白中去除纳米颗粒

使用标准湿法清洁从EUV掩模空白中去除纳米颗粒

结论

我们使用50纳米灵敏度的Lasertec M7360检测系统研究了基于SPM的清洁性能。发现当前的清洁工艺对于50纳米处理颗粒具有足够高的颗粒去除效率。然而,我们观察到许多小于80纳米的加法器。加法器的来源被确定为来自SPM化学品的颗粒。我们认为过程加法器是第一个为EUV口罩清洗。

本文已经采取了两种并行的方法来消除加法器:液体粒子过滤和过程优化来减轻加法器。我们已经证明了基于M7360检查可以实现一位数的加法器。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米
    +关注

    关注

    2

    文章

    678

    浏览量

    36680
  • 微米
    +关注

    关注

    0

    文章

    15

    浏览量

    10795
  • EUV
    EUV
    +关注

    关注

    8

    文章

    579

    浏览量

    85581
收藏 人收藏

    评论

    相关推荐

    利用微流控芯片,实现银纳米颗粒的按需可控制备

    纳米颗粒(AgNP)因其独特的抗菌、抗病毒性质,在医学、牙科、纺织、塑料、光伏技术和信息处理设备等领域有广泛的应用前景。
    的头像 发表于 04-22 17:15 376次阅读
    利用微流控芯片,实现银<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>的按需可控制备

    什么是掩模版?掩模版(光罩MASK)—半导体芯片的母板设计

    掩模版(Photomask)又称光罩、光掩模、光刻掩模版、掩膜版、掩膜板等,是光刻工艺中关键部件之一,是下游行业产品制造过程中的图形“底片”转移用的高精密工具
    的头像 发表于 12-25 11:41 1w次阅读
    什么是<b class='flag-5'>掩模</b>版?<b class='flag-5'>掩模</b>版(光罩MASK)—半导体芯片的母板设计

    什么是聚集度指数PDI粒径分布-LNP脂质纳米颗粒的PDI的影响因素

    性能影响很大。例如,在制备纳米材料时,如果颗粒尺寸分布不均匀,则会影响其光学、电学、磁学等性能;在制备药物时,如果药物微粒大小不一致,则会影响其生物利用度和药效。图1:中芯启恒LNP脂质体制备设备
    发表于 11-28 13:38

    用于研究单个纳米颗粒表面的显微光谱

    背景 András Deák博士的研究重点是了解分子如何相互作用并附着在纳米颗粒表面背后的物理学。许多应用依赖于以预定方式附着在纳米颗粒表面的引入分子。然而,如果
    的头像 发表于 11-15 10:33 204次阅读
    用于研究单个<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>表面的显微光谱

    高数值孔径EUV的可能拼接解决方案

    采用曲线掩模的另一个挑战是需要将两个掩模缝合在一起以在晶圆上形成完整的图像。对于高数值孔径 EUV,半场掩模的拼接误差是一个主要问题。
    的头像 发表于 10-23 12:21 386次阅读
    高数值孔径<b class='flag-5'>EUV</b>的可能拼接解决方案

    关于高数值孔径EUV和曲线光掩模等灯具的讨论

    半导体芯科技编译 来源:Silicon Semiconductor eBeam Initiative已完成第12届年度eBeam Initiative杰出人物调查。 来自半导体生态系统(包括光掩模
    的头像 发表于 10-17 15:00 247次阅读

    EUV薄膜容错成本高 成芯片良率的关键

    近20年来,EUV光源、EUV掩模EUV光刻胶一直是EUV光刻的三大技术挑战。
    的头像 发表于 09-14 09:45 621次阅读
    <b class='flag-5'>EUV</b>薄膜容错成本高 成芯片良率的关键

    在从MA35D1把SPP笔MA35D1中去除后,NAND没有启动是为什么?

    在从MA35D1把SPP笔MA35D1中去除后,NAND没有启动。
    发表于 09-06 07:15

    EUV光刻市场高速增长,复合年增长率21.8%

    EUV掩膜,也称为EUV掩模EUV光刻掩膜,对于极紫外光刻(EUVL)这种先进光刻技术至关重要。EUV光刻是一种先进技术,用于制造具有更小
    的头像 发表于 08-07 15:55 435次阅读

    一文解析EUV掩模版缺陷分类、检测、补偿

    光刻机需要采用全反射光学元件,掩模需要采用反射式结构。 这些需求带来的是EUV光刻和掩模制造领域的颠覆性技术。EUV光刻掩模的制造面临
    发表于 06-07 10:45 1157次阅读
    一文解析<b class='flag-5'>EUV</b><b class='flag-5'>掩模</b>版缺陷分类、检测、补偿

    针对去离子水在晶片表面处理的应用的研究

    随着半导体科技的发展,在固态微电子器件制造中,人们对清洁基底表面越来越重视。湿法清洗一般使用无机酸、碱和氧化剂,以达到去除光阻剂、颗粒、轻有机物、金属污染物以及硅片表面上的天然氧化物的
    的头像 发表于 06-05 17:18 477次阅读
    针对去离子水在晶片表面处理的应用的研究

    什么是EUV***?

    需要明确什么是EUV光刻机。它是一种采用极紫外线光源进行曝光的设备。与传统的ArF光刻机相比,EUV光刻机可以将曝光分辨率提高到7纳米以下的超高级别,从而实现更高清晰度和更高性能的芯片制造。
    发表于 05-22 12:48 4073次阅读

    基于银纳米颗粒/铜纳米线复合材料的电化学无酶葡萄糖传感器

    研究人员首先对银纳米颗粒/铜纳米线进行了合成,并对制备的铜纳米线和化学沉积后负载不同尺寸银纳米颗粒
    的头像 发表于 05-12 15:19 743次阅读
    基于银<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>/铜<b class='flag-5'>纳米</b>线复合材料的电化学无酶葡萄糖传感器

    功率放大器在磁性微纳米颗粒微流体操控研究中的应用

    实验名称: 功率放大器在磁性微纳米颗粒微流体操控研究中的应用 实验内容: 设计一套精准的磁场操控平台,并制备两种不同类型磁性颗粒;研究了均匀型磁性颗粒在磁场下的成链的机理,给出成链模型
    的头像 发表于 05-08 11:35 288次阅读
    功率放大器在磁性微<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>微流体操控研究中的应用

    RCA清洁变量对颗粒去除的影响

    集成设备制造的缩小图案要求湿化学加工的表面清洁度和表面光滑度,特别是对于常见的清洁技术RCA清洁(SC-1和SC-2)。本文讨论了表面制备参数的特性和影响。
    的头像 发表于 05-06 14:25 446次阅读
    RCA<b class='flag-5'>清洁</b>变量对<b class='flag-5'>颗粒</b><b class='flag-5'>去除</b>的影响