0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一文带你彻底了解卷积神经网络

Linux爱好者 来源:SimpleAI 作者:Beyond 2021-10-26 09:52 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络是一种曾经让我无论如何也无法弄明白的东西,主要是名字就太“高级”了,网上的各种各样的文章来介绍“什么是卷积”尤为让人受不了。听了吴恩达的网课之后,豁然开朗,终于搞明白了这个东西是什么和为什么。我这里大概会用6~7篇文章来讲解CNN并实现一些有趣的应用。看完之后大家应该可以自己动手做一些自己喜欢的事儿了。

一、引子:边界检测我们来看一个最简单的例子:“边界检测(edge detection)”,假设我们有这样的一张图片,大小8×8:图片中的数字代表该位置的像素值,我们知道,像素值越大,颜色越亮,所以为了示意,我们把右边小像素的地方画成深色。图的中间两个颜色的分界线就是我们要检测的边界。怎么检测这个边界呢?

我们可以设计这样的一个 滤波器(filter,也称为kernel),大小3×3:然后,我们用这个filter,往我们的图片上“盖”,覆盖一块跟filter一样大的区域之后,对应元素相乘,然后求和。计算一个区域之后,就向其他区域挪动,接着计算,直到把原图片的每一个角落都覆盖到了为止。这个过程就是 “卷积”。

(我们不用管卷积在数学上到底是指什么运算,我们只用知道在CNN中是怎么计算的。)

这里的“挪动”,就涉及到一个步长了,假如我们的步长是1,那么覆盖了一个地方之后,就挪一格,容易知道,总共可以覆盖6×6个不同的区域。那么,我们将这6×6个区域的卷积结果,拼成一个矩阵:诶?!发现了什么?

这个图片,中间颜色浅,两边颜色深,这说明咱们的原图片中间的边界,在这里被反映出来了!从上面这个例子中,我们发现,我们可以通过设计特定的filter,让它去跟图片做卷积,就可以识别出图片中的某些特征,比如边界。

上面的例子是检测竖直边界,我们也可以设计出检测水平边界的,只用把刚刚的filter旋转90°即可。对于其他的特征,理论上只要我们经过精细的设计,总是可以设计出合适的filter的。我们的CNN(convolutional neural network),主要就是通过一个个的filter,不断地提取特征,从局部的特征到总体的特征,从而进行图像识别等等功能。那么问题来了,我们怎么可能去设计这么多各种各样的filter呀?

首先,我们都不一定清楚对于一大推图片,我们需要识别哪些特征,其次,就算知道了有哪些特征,想真的去设计出对应的filter,恐怕也并非易事,要知道,特征的数量可能是成千上万的。其实学过神经网络之后,我们就知道,这些filter,根本就不用我们去设计,每个filter中的各个数字,不就是参数吗,我们可以通过大量的数据,来 让机器自己去“学习”这些参数嘛。这,就是CNN的原理。二、CNN的基本概念1.padding 填白

从上面的引子中,我们可以知道,原图像在经过filter卷积之后,变小了,从(8,8)变成了(6,6)。假设我们再卷一次,那大小就变成了(4,4)了。这样有啥问题呢?

主要有两个问题:

每次卷积,图像都缩小,这样卷不了几次就没了;

相比于图片中间的点,图片边缘的点在卷积中被计算的次数很少。这样的话,边缘的信息就易于丢失。

为了解决这个问题,我们可以采用padding的方法。我们每次卷积前,先给图片周围都补一圈空白,让卷积之后图片跟原来一样大,同时,原来的边缘也被计算了更多次。比如,我们把(8,8)的图片给补成(10,10),那么经过(3,3)的filter之后,就是(8,8),没有变。我们把上面这种“让卷积之后的大小不变”的padding方式,称为 “Same”方式,

把不经过任何填白的,称为 “Valid”方式。这个是我们在使用一些框架的时候,需要设置的超参数。2.stride 步长

前面我们所介绍的卷积,都是默认步长是1,但实际上,我们可以设置步长为其他的值。

比如,对于(8,8)的输入,我们用(3,3)的filter,

如果stride=1,则输出为(6,6);

如果stride=2,则输出为(3,3);(这里例子举得不大好,除不断就向下取整)3.pooling 池化

这个pooling,是为了提取一定区域的主要特征,并减少参数数量,防止模型过拟合。

比如下面的MaxPooling,采用了一个2×2的窗口,并取stride=2:除了MaxPooling,还有AveragePooling,顾名思义就是取那个区域的平均值。4.对多通道(channels)图片的卷积(重要!)

这个需要单独提一下。彩色图像,一般都是RGB三个通道(channel)的,因此输入数据的维度一般有三个:(长,宽,通道)。

比如一个28×28的RGB图片,维度就是(28,28,3)。前面的引子中,输入图片是2维的(8,8),filter是(3,3),输出也是2维的(6,6)。如果输入图片是三维的呢(即增多了一个channels),比如是(8,8,3),这个时候,我们的filter的维度就要变成(3,3,3)了,它的 最后一维要跟输入的channel维度一致。

这个时候的卷积,是三个channel的所有元素对应相乘后求和,也就是之前是9个乘积的和,现在是27个乘积的和。因此,输出的维度并不会变化。还是(6,6)。但是,一般情况下,我们会 使用多了filters同时卷积,比如,如果我们同时使用4个filter的话,那么 输出的维度则会变为(6,6,4)。我特地画了下面这个图,来展示上面的过程图中的输入图像是(8,8,3),filter有4个,大小均为(3,3,3),得到的输出为(6,6,4)。

我觉得这个图已经画的很清晰了,而且给出了3和4这个两个关键数字是怎么来的,所以我就不啰嗦了(这个图画了我起码40分钟)。其实,如果套用我们前面学过的神经网络的符号来看待CNN的话,

我们的输入图片就是X,shape=(8,8,3);

4个filters其实就是第一层神金网络的参数W1,,shape=(3,3,3,4),这个4是指有4个filters;

我们的输出,就是Z1,shape=(6,6,4);

后面其实还应该有一个激活函数,比如relu,经过激活后,Z1变为A1,shape=(6,6,4);

所以,在前面的图中,我加一个激活函数,给对应的部分标上符号,就是这样的:

f672abf4-3582-11ec-82a8-dac502259ad0.jpg

【个人觉得,这么好的图不收藏,真的是可惜了】三、CNN的结构组成上面我们已经知道了卷积(convolution)、池化(pooling)以及填白(padding)是怎么进行的,接下来我们就来看看CNN的整体结构,它包含了3种层(layer):1. Convolutional layer(卷积层—CONV)

由滤波器filters和激活函数构成。

一般要设置的超参数包括filters的数量、大小、步长,以及padding是“valid”还是“same”。当然,还包括选择什么激活函数。2. Pooling layer (池化层—POOL)

这里里面没有参数需要我们学习,因为这里里面的参数都是我们设置好了,要么是Maxpooling,要么是Averagepooling。

需要指定的超参数,包括是Max还是average,窗口大小以及步长。

通常,我们使用的比较多的是Maxpooling,而且一般取大小为(2,2)步长为2的filter,这样,经过pooling之后,输入的长宽都会缩小2倍,channels不变。3. Fully Connected layer(全连接层—FC)

这个前面没有讲,是因为这个就是我们最熟悉的家伙,就是我们之前学的神经网络中的那种最普通的层,就是一排神经元。因为这一层是每一个单元都和前一层的每一个单元相连接,所以称之为“全连接”。

这里要指定的超参数,无非就是神经元的数量,以及激活函数。接下来,我们随便看一个CNN的模样,来获取对CNN的一些感性认识上面这个CNN是我随便拍脑门想的一个。它的结构可以用:

X→CONV(relu)→MAXPOOL→CONV(relu)→FC(relu)→FC(softmax)→Y

来表示。这里需要说明的是,在经过数次卷积和池化之后,我们 最后会先将多维的数据进行“扁平化”,也就是把 (height,width,channel)的数据压缩成长度为 height × width × channel 的一维数组,然后再与 FC层连接,这之后就跟普通的神经网络无异了。

可以从图中看到,随着网络的深入,我们的图像(严格来说中间的那些不能叫图像了,但是为了方便,还是这样说吧)越来越小,但是channels却越来越大了。在图中的表示就是长方体面对我们的面积越来越小,但是长度却越来越长了。四、卷积神经网络 VS. 传统神经网络其实现在回过头来看,CNN跟我们之前学习的神经网络,也没有很大的差别。

传统的神经网络,其实就是多个FC层叠加起来。

CNN,无非就是把FC改成了CONV和POOL,就是把传统的由一个个神经元组成的layer,变成了由filters组成的layer。那么,为什么要这样变?有什么好处?

具体说来有两点:1.参数共享机制(parameters sharing)

我们对比一下传统神经网络的层和由filters构成的CONV层:

假设我们的图像是8×8大小,也就是64个像素,假设我们用一个有9个单元的全连接层:那这一层我们需要多少个参数呢?需要 64×9 = 576个参数(先不考虑偏置项b)。因为每一个链接都需要一个权重w。那我们看看 同样有9个单元的filter是怎么样的:其实不用看就知道,有几个单元就几个参数,所以总共就9个参数!因为,对于不同的区域,我们都共享同一个filter,因此就共享这同一组参数。

这也是有道理的,通过前面的讲解我们知道,filter是用来检测特征的,那一个特征一般情况下很可能在不止一个地方出现,比如“竖直边界”,就可能在一幅图中多出出现,那么 我们共享同一个filter不仅是合理的,而且是应该这么做的。由此可见,参数共享机制,让我们的网络的参数数量大大地减少。这样,我们可以用较少的参数,训练出更加好的模型,典型的事半功倍,而且可以有效地 避免过拟合。

同样,由于filter的参数共享,即使图片进行了一定的平移操作,我们照样可以识别出特征,这叫做 “平移不变性”。因此,模型就更加稳健了。2.连接的稀疏性(sparsity of connections)

由卷积的操作可知,输出图像中的任何一个单元,只跟输入图像的一部分有关系:而传统神经网络中,由于都是全连接,所以输出的任何一个单元,都要受输入的所有的单元的影响。这样无形中会对图像的识别效果大打折扣。比较,每一个区域都有自己的专属特征,我们不希望它受到其他区域的影响。正是由于上面这两大优势,使得CNN超越了传统的NN,开启了神经网络的新时代。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106827
  • 卷积
    +关注

    关注

    0

    文章

    95

    浏览量

    18927

原文标题:从此明白了卷积神经网络(CNN)

文章出处:【微信号:LinuxHub,微信公众号:Linux爱好者】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像
    的头像 发表于 11-19 18:15 1848次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x&gt;0 时,梯度恒为1,无梯度耗散问题,收敛快;当x&lt;0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    构建CNN网络模型并优化的般化建议

    通过实践,本文总结了构建CNN网络模型并优化的般化建议,这些建议将会在构建高准确率轻量级CNN神经网络模型方面提供帮助。 1)避免单层神经网络:我们清楚
    发表于 10-28 08:02

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的些经验

    模型。 我们使用MNIST数据集,训练卷积神经网络(CNN)模型,用于手写数字识别。旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的
    的头像 发表于 09-28 10:03 711次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 、结构特点 BP神经网络 : BP
    的头像 发表于 02-12 15:53 1335次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为种常用的机器学习模型,具有显著的优点,同时也存在些不容忽视的缺点。以下是对BP神经网络优缺点的分析
    的头像 发表于 02-12 15:36 1603次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍:
    的头像 发表于 02-12 15:18 1294次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Ba
    的头像 发表于 02-12 15:15 1362次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 网络结构 BP
    的头像 发表于 02-12 15:13 1543次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2271次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法