0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

硅光子学有可能打破芯片互连是目前的技术这项瓶颈

ss 来源:芯东西 作者:芯东西 2021-04-21 16:22 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

上周日,电路和计算机系统专家杰克·赫兹(Jake Hertz)撰文称,随着芯片制程的逐步缩小,摩尔定律正在遇到天花板,其中芯片互连是目前的技术瓶颈之一,硅光子学则有可能解决这一问题。杰克·赫兹主要分享了IMEC登上《自然·光子学》的研究项目和英特尔的硅光子学器件研究成果。

硅光子学是基于硅芯片的光子学技术,通过光波导传输数据,而非传统集成电路中用铜互连线传输电信号,能够实现更高的数据速率,也不存在电磁干扰问题,可以降低芯片功耗。

一、互连正在成为芯片性能瓶颈

当前集成电路有两个发展趋势:芯片制程正变得越来越小,芯片面积变得越来越大。由于制程变小,互连线的宽度和厚度都在减小;而芯片面积的增加使得互连线也在变长。

互连线就相当于IC内部的街道和高速公路,可将集成电路的各个元件连接起来,并与外界进行互动交流。互连层是芯片制造工艺中最密集、成本最容易受影响的部分。

此外,因为芯片互连层的增加,使得各个互连层之间的距离逐渐变小。这导致互连阻抗大幅增加,令互连层成为芯片延迟和功耗的最大输出来源之一。

▲互连正在成为IC设计的瓶颈(来源:Tomasz Grzela)

二、IMEC:研发100倍灵敏度光机械超声探测器

除了英特尔之外,来自比利时微电子研究中心的一组研究人员也认为硅光子学具有重要的研究价值。

Wouter Westerveld领导的研究小组开发出一种集成在硅光子芯片上的高灵敏度光机械超声探测器(OMUS),该设备的灵敏度比相同尺寸的压电探测器高100倍,这项研究登上了顶级学术期刊《自然·光子学》。

论文链接:https://www.nature.com/articles/s41566-021-00776-0

传统的超声波传感器使用压电器件阵列,其压电器件依赖于特定超声波频率下的机械共振,会受到许多因素的限制。例如,压电器件越小,其灵敏度就越低,难以构建大型阵列。

而IMEC的研究人员提出了一种新的方法,即使用“裂肋式”硅光子波导(Split-rib waveguide)。他们通过像肋骨一样的光子波导环形依附在薄膜上,充当光子谐振器,之后再对整个薄膜施加一个强电场。

▲光机械超声探测器示意图(来源:《自然·光子学》)

这样,当超声波使薄膜稍微变形时,电场就会在波导的折射率中发生变化,从而该改变环形肋的共振波长。研究人员通过可调谐激光器实时读取波长,根据波长改变化得到精准的探测结果。

这项技术使得大型OMUS阵列可以集成到硅光子芯片上,凭借其特性可以适用于X线检查和肿瘤检测等生物医学应用。

三、英特尔:光互连六大技术要素齐备

许多人认为,解决这些问题的方法是硅光子学。去年12月4日,在英特尔研究院开放日上,英特尔首席工程师、英特尔研究院PHY研究实验室主任James Jaussi分享了英特尔在集成光点领域的最新进展。

James指出,电气互连面临两大限制,一是电气互连逐渐逼近物理极限,高能效电路设计存在诸多限制;二是I/O功耗墙的限制,即I/O功耗会逐渐高于现有的插接电源,导致电气性能扩展跟不上带宽需求的增长速度。

他提到,通过硅光子学技术,英特尔解决了电气I/O(输入/输出)的限制,实现了在光互连领域的关键进展。

光互连技术涉及六大技术要素,分别是:光产生、光放大、光检测、光调制、CMOS接口电路和封装集成。此前,英特尔在混合激光器的光产生领域实现创新。活动上,James展示了英特尔在其他五大技术构建模块上的进展。

分别是微型环调制器(micro-ring modulators)、全硅光电检测器(all silicon photo detector)、集成半导体光学放大器、集成多波长激光器(Integrated multi-wavelength lasers)和硅光子与CMOS芯片集成的封装技术。

根据英特尔官网消息,其微型环调制器缩小到了传统芯片调制器尺寸的1/1000。据其介绍,英特尔还是唯一一家在CMOS芯片单一平台上将多波长激光器、半导体光学放大器、全硅光电检测器以及微型环调制器集成到一起的公司。

四、硅光子学技术仍处研究阶段

尽管硅光子学有很大的前景,但是该技术也面临很多挑战:

1、由于硅具有非直接带隙,因此发光效率很低。基于硅的激光器或放大器不能与其它基于GaAs或者InP的激光器或放大器相媲美;

2、硅的带隙也较大,无法探测波长接近1300nm、1500nm波长的光;

3、硅具有二阶非线性,因此无法制作电光调制器;

4、芯片上的激光光源很难进行散热;

5、光学连接器精度要求较高,难以在量产中实现。

所以目前为止,这项技术主要局限于研究。但是硅光子学很符合数据中心等高传输速率、低能耗应用的需求,将会受市场持续推动。

结语:硅光子学或可解决互连瓶颈

硅光子学在工业、军事、经济等各个领域内都有广泛的应用,更是光网络通信与光子计算等技术的基础。鉴于目前传统半导体电路面临的挑战,硅光子学技术已经受到了越来越多的关注。其高速传输能力和低能耗或许可以解决当前芯片中的互连瓶颈,推动芯片技术进一步发展。

不过,构建实用的硅光子学设备仍需要材料科学、光子学、电子学等领域的研究人员之间的广泛跨学科努力和合作。

来源:All About Circuits、英特尔、《自然·光子学》

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英特尔
    +关注

    关注

    61

    文章

    10275

    浏览量

    179340
  • IC设计
    +关注

    关注

    38

    文章

    1369

    浏览量

    107922
  • IMEC
    +关注

    关注

    0

    文章

    60

    浏览量

    22784
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    陀螺形体材料,突破光子芯片瓶颈

    电子发烧友网综合报道 在人工智能、物联网与大数据技术驱动下,全球数据量正以指数级速度增长。传统电子芯片受限于电子传输的物理瓶颈,已难以满足未来计算对速度与能效的严苛需求。在此背景下,以光子
    的头像 发表于 11-23 07:14 9621次阅读
    陀螺形体材料,突破<b class='flag-5'>光子</b><b class='flag-5'>芯片</b><b class='flag-5'>瓶颈</b>

    【「AI芯片:科技探索与AGI愿景」阅读体验】+半导体芯片产业的前沿技术

    无线通信(CCWC),可以解决传统芯片内采用金属互连线、通孔灯通信的瓶颈,提高芯片的性能和能效,同时大大缩小面积。 CCWC面临的挑战:
    发表于 09-15 14:50

    光子封装中胶水及其使用教程

    ,详细探讨了它们的力学模型,并基于这些信息,进一步分析了粘合技术在安装中的 具体应用场景,以及在各场景中使用的粘合技术的优势和潜在问题。 光子中常用的胶水类型 在
    的头像 发表于 09-08 15:34 253次阅读
    <b class='flag-5'>光子</b>封装中胶水及其使用教程

    芯片技术突破和市场格局

    电子发烧友网报道(文/李弯弯)在人工智能算力需求爆发式增长、数据中心规模持续扩张的背景下,传统电互连技术面临带宽瓶颈与能耗危机。芯片凭借
    的头像 发表于 08-31 06:49 2w次阅读

    从材料到集成:光子芯片技术创新,突破算力瓶颈

    电子发烧友网报道(文/李弯弯)在全球科技竞争的浪潮中,光子芯片作为突破电子芯片性能瓶颈的核心技术,正逐渐成为各方瞩目的焦点。它以光波作为信息
    的头像 发表于 08-21 09:15 7985次阅读

    关键技术突破!国内首个光子芯片中试线成功下线首片晶圆

    酸锂调制器芯片的规模化量产,该芯片的关键技术指标达到国际先进水平。 光子芯片关键技术突破
    的头像 发表于 06-13 01:02 4668次阅读

    XSR芯片互连技术的定义和优势

    XSR 即 Extra Short Reach,是一种专为Die to Die之间的超短距离互连而设计的芯片互连技术。可以通过芯粒互连(N
    的头像 发表于 06-06 09:53 1489次阅读
    XSR<b class='flag-5'>芯片</b>间<b class='flag-5'>互连</b><b class='flag-5'>技术</b>的定义和优势

    机器学习赋能的智能光子器件系统研究与应用

    腾讯会议---六月直播 1.机器学习赋能的智能光子器件系统研究与应用 2.COMSOL声学多物理场仿真技术与应用 3.超表面逆向设计及前沿应用(从基础入门到论文复现) 4.智能光学计算成像
    的头像 发表于 06-04 17:59 449次阅读
    机器学习赋能的智能<b class='flag-5'>光子</b><b class='flag-5'>学</b>器件系统研究与应用

    AMD收购光子初创企业Enosemi AMD意在CPO技术

    近日,AMD公司宣布,已完成对光子初创企业Enosemi的收购,但是具体金额未被披露;AMD的此次收购Enosemi旨在推动光子与共封装光学(CPO)
    的头像 发表于 06-04 16:38 1066次阅读

    深入解析光子芯片制造流程,揭秘科技奇迹!

    在信息技术日新月异的今天,光子芯片制造技术正逐渐成为科技领域的研究热点。作为“21世纪的微电子技术
    的头像 发表于 03-19 11:00 2319次阅读
    深入解析<b class='flag-5'>硅</b>基<b class='flag-5'>光子</b><b class='flag-5'>芯片</b>制造流程,揭秘科技奇迹!

    APD的雪崩增益与系统优化:全面解读APD-QE测试技术

    、低成本的光电融合。这项技术被视为连接电子与光子世界的桥梁,可大幅提升下一代芯片的数据传输速度与效率。例如在高速数据中心、5G网络和光学计算等应用中,
    的头像 发表于 03-16 17:26 2176次阅读
    APD的雪崩增益与系统优化:全面解读APD-QE测试<b class='flag-5'>技术</b>

    集成电路和光子集成技术的发展历程

    本文介绍了集成电路和光子集成技术的发展历程,并详细介绍了铌酸锂光子集成技术和铌酸锂复合薄膜技术
    的头像 发表于 03-12 15:21 1559次阅读
    集成电路和<b class='flag-5'>光子</b>集成<b class='flag-5'>技术</b>的发展历程

    集成光子的里程碑:大功率可调谐激光器开辟新天地

    该设备和潜在应用 研究人员利用 LMA 放大器在光子技术上制造出了近 2 瓦的大功率可调谐激光器。这一进展将彻底改变集成光子,并有
    的头像 发表于 02-17 06:29 546次阅读
    集成<b class='flag-5'>光子</b><b class='flag-5'>学</b>的里程碑:大功率可调谐激光器开辟新天地

    如何在光子中利用电子生态系统

    本文介绍了如何在光子中利用电子生态系统。 这一目标要求光子学制造利用现有的电子制造工艺和生态系统。光子必须采用无晶圆厂模型、可以在焊接步
    的头像 发表于 02-10 10:24 1031次阅读
    如何在<b class='flag-5'>光子</b><b class='flag-5'>学</b>中利用电子生态系统

    先进封装中的TSV/通孔技术介绍

    注入导电物质,将相同类别芯片或不同类别的芯片进行互连,达到芯片级集成的先进封装技术。 TSV技术
    的头像 发表于 12-17 14:17 3100次阅读
    先进封装中的TSV/<b class='flag-5'>硅</b>通孔<b class='flag-5'>技术</b>介绍