0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无线电信号是如何传输和调制的?

GReq_mcu168 来源:数字测试 作者:数字测试 2021-03-25 11:53 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

要理解如何进行无线数据传输,我们需要了解:

什么是频率?

信息 / 数据信号

时间表示

频率表示,为什么它很重要?

滤波器如何工作?

FCC 通信频段

调制和解调

这些主题可能您在大学专业课上学过(您也可以在维基百科中查询),其中涉及非常庞大的知识。此前我为高级项目组中非电子工程专业的学生准备的PPT中,配套介绍了这些主题――学生们期望能够弄清楚我们谈到的“900MHz”、“2.4GHz”或“跳频”等术语。本文限于篇幅,难以对这些主题的阐述完整、彻底,忽略了专业课所涉及的很多细节,仅提供无线传输方面的概念性说明。

什么是频率?

频率是描述每隔多长时间振荡一次或重复一次的术语,单位为赫兹(Hz)或秒的倒数。如果每秒振荡60次,则其频率为60Hz。在本文中,我们将主要探讨音频波(气压的振荡),及其如何以数百千赫频率从无线电台传播到您的车载收音机上(或任何AM无线电台)。任何波都有一个频率,光波也一样。光波和其他更高频率的波(例如X射线、伽马射线、微波)一般用波长来表示,而不用频率。例如,绿色光的波长大约为400纳米。下图显示了行进波单位间的关系:

46b97136-8ced-11eb-8b86-12bb97331649.jpg

正弦波的基本单位。

假设信号速度恒定,则波长和频率是可以换算的,不过这已超出本文的讨论范畴。

不同复杂性的信息信号

如果发送一个纯正弦波信号(称为“音频”)。它不携载任何实际信息,听上去也并不好听。下图是一个正弦波的图像,X轴为时间,Y轴为电压,这是一个150Hz参考信号。

4a553910-8ced-11eb-8b86-12bb97331649.jpg

单音频信号(时域)

那么为什么要看这幅图像呢?让我们来看一下时域中复杂性不断增加的信号。这是一个双音频信号(两个音频叠加在一起)。此正弦波与上一个正弦波相同,只不过又加上了另一个倍频(300Hz)的正弦波。

4a697f1a-8ced-11eb-8b86-12bb97331649.jpg

双音频信号(时域)

那么由多个不同频率的音频组成的信号是什么样的呢?

多音频信号(时域)

它变得毛刺更多。您能在此图中看到的唯一真实信息便是在指定时间内的电压电平。这就是信息的本质,它极其重要——但也使分析变得复杂,更使了解调制工作变得更加困难。为此,您可能希望用另一种不同的方式(频域)绘制信号图像。它显示信号在一系列频率上的强度。让我们看一下。

为何信号的频谱很重要?

要将大量信号转换到频域中,需要进行精密的数学运算。这项工作很困难,计算量很大,必须反复练习才能掌握。我甚至定期对那些重要信号的进行卷积运算,练习我的转换能力。不管怎样,让我们看一下以上三个信号如何用这种形式来表示(这里忽略中间的推演运算)。我们不再绘制信号电压随时间的变化,而是绘制信号功率随频率的变化。

4af736fc-8ced-11eb-8b86-12bb97331649.jpg

单音频信号(频域)

4b4e6e18-8ced-11eb-8b86-12bb97331649.jpg

双音频信号(频域)

4b634e14-8ced-11eb-8b86-12bb97331649.jpg

多音频信号(频域)

注意到图中明显的尖峰了吗?那是正弦波在特定频率(X轴)上的数学表示。理想情况下,这些尖峰应当是无限窄(宽度)和无限高的,但是受我所使用的Spice软件的技术水平限制,它是不完美的。这种信号称为脉冲信号。有关此信号的详细说明,请阅读此处!对于这个音频,我们看到在频域看到一个尖峰,在150Hz处。而双音频信号在频域有两个尖峰,在150Hz和300Hz处。多音频信号在时域中基本无法解读,时域信号中众多的小尖峰,是多个频率点的叠加组成的。

最后举一个例子,一个实际的音频信号。如下图,我采样了15秒歌手Cream的歌曲《白色的房间(WhiteRoom)》。不必为信号长的摸样担心,在EricClapton的吉他独奏期间,任何麦克风都没有损坏。

音频信号

这就是大多数信号的看上去的样子,尤其是模拟信号。人和乐器的声音并不是在离散的频率上播放,其频率内容分布在整个频率范围内(尽管某些内容几乎是听不到的)。这个范围在3Hz至20kHz之间,大约就是人耳能够听到的频率范围。低音部的频率较低,高音部的频率较高。Y轴标度用dB表示,dB表示一个比例,没有单位。在本质上来说,dB值越高,那个频率对应的信号就越高。

理论上,我们可以用无数个音频信号累加之和来表示这个模拟信号。

滤波器

幸好频域的图形表示可为滤波器设计提供一些帮助。滤波器有四种类型,包括:

低通滤波器:高于“截止频率”的所有频率都被滤除。

高通滤波器:低于“截止频率”的所有频率都被滤除。

带通滤波器:距离“中心频率”一定范围外的所有频率都被滤除。

带阻滤波器:距离“中心频率”一定范围内的所有频率都被滤除。

4bac2e0e-8ced-11eb-8b86-12bb97331649.jpg

由上而下:带通滤波器、低通滤波器、高通滤波器

“3dB”点是信号输出降低大约30%的地方。dB是一个对数标度:

x[dB]=10*log(x[linear]) x[linear]=10^(x[dB]/10)

基于这个公式,x[linear]=0.7,对应的x[dB]大约为-3.0dB,0.7就是70%,就是信号衰减30%,这时对应的频率就称为滤波器的截止频率。汽车音响就是一个实际的例子,它可能包括一个“分频器”,其特殊的滤波器设计可将低频切换至低音扬声器、高频切换至高音扬声器。这对于无线接收机是非常重要的。

FCC通信频段

FCC和其他国际组织一致认为,如果任由任何人随意使用任何频率,那么必然会导致绝对的混乱。因此,应为不同用户分配不同的频率范围。例如分别为FM无线电、AM无线电、WiFi、移动电话、海事通信、空中交通管制、业余无线电、对讲机、军事通信、警用电台等应用分配不同频段。对了,我们还没提卫星或空间通信!这真是太乱了,幸亏有FCC帮助管理。如果您感到好奇,不妨用谷歌搜索一下,马上就能找到一个更详细的图表。

4bd1bb38-8ced-11eb-8b86-12bb97331649.jpg

FCC频谱分配表

FCC已为小范围的个人应用、业余爱好者的应用和其他常规“ISM频段”应用(工业、科学、医疗)预留了部分频段。这就是WiFi、对讲机、无线传感器和其他通信设备的工作频段。让我们再次讨论一下频率!人耳的听力范围为20Hz至20kHz。如果我们的AM电台为680kHz,那么无线电塔如何将声音变到该频率呢?它如何避免干扰到其他电台?接收机如何将信号频率转换回可听范围?

调制

让我们离开频域,回到时域。再次重申一下:我们的讨论过于简单,略过了很多细节!在此只是为了得到一个概念性的结果。之所以这么说是因为,数学表示最适合在时域中使用,而图形表示在频域中效果最佳。

调制的作用就是将信号从低频(信息)转换到高频(载波)。思路很简单:用您的信息乘以高频载波,例如680kHz,这就是AM广播!稍等一下,事情果真如此简单吗?让我们看几个数学关系式。在此例中,θ就是信息(可听内容),φ是载波(例如,AM广播频率)。

4eee33aa-8ced-11eb-8b86-12bb97331649.jpg

图中文字中英对照

4f0f1700-8ced-11eb-8b86-12bb97331649.jpg

我们的AM信号如果用公式来表达,涉及多个信号的乘法运算,这在时域或频域中是很难想像的,因为我们仅仅看到音频是什么样的。但是上述这种对应关系告诉我们:两个信号相乘可用两个信号相加来表示!现在,我们很容易在频域中绘制出经乘法运算得到的信号。

4f48b492-8ced-11eb-8b86-12bb97331649.jpg

在载波(1000Hz)上调制的单音频(150Hz)

在此图中,我们用150Hz音频乘以1000Hz载波。上表显示了两个半功率信号,分别位于1000-150和1000+150Hz处,也就是在850Hz和1150Hz处。那么当经过调制后,我们每个音节的表现如何呢?

4f70dc06-8ced-11eb-8b86-12bb97331649.jpg

声音调制到700kHz

不出所料,我们看到了两个信号。一个是载波+信息,另一个是载波-信息(甚至注意到它是如何反转的)。

这就是AM频谱和信号内容的大致图解。

4f954168-8ced-11eb-8b86-12bb97331649.jpg

解调

现在我们来讨论接收机。所有信号均从天线开始,在同一时间查看所有信号,看到的是一团乱麻。天线拾取到大量的数据,但它并不负责进行分类,这是调谐器和其他硬件的工作。信号解调的原理与调制原理完全相同,非常方便!要将我们的音频信号转回到“基带”,并将其发送至扬声器,我们可以再次用载波乘以所有信号。

这个公式中包含一大串数学函数、括号和频率变量。不过它是对的,我们由此导出了四个信号:

1/4功率信号,(2*载波+信息)

1/4功率信号,(信息)

1/4功率信号,(2*载波-信息)

1/4功率信号,(-信息)

让我们忽略这个包含负频率的项,它是我们讨论调制及涉及的运算时,常常会出现的数学产物。在双倍载波上的两个信号(假设载波远大于信息,它们几乎是相同的)可用低通滤波器滤出。低通滤波器会阻断信号的所有高频内容,于是只将原始信息留给我们。我们可用放大器放大原始信息,然后发送到扬声器。太酷了!这就是它的图像,但是要向后延迟一点。

结论

本文的目的是高度概括地介绍无线电信号是如何传输和调制的。通过将多个音频(或基带)信号乘以不同的高频信号(载波),我们可以通过同一个信道成功传输多个数据流而不会相互干扰。再次用载波相乘,将调制的信号转换回基带,再用低通滤波器和放大器清理并放大信号,即可让我们听到各种美妙动听的声音!

原文标题:信号调制的工作原理

文章出处:【微信公众号:玩转单片机】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 无线
    +关注

    关注

    31

    文章

    5635

    浏览量

    177977
  • 信号
    +关注

    关注

    11

    文章

    2902

    浏览量

    79685

原文标题:信号调制的工作原理

文章出处:【微信号:mcu168,微信公众号:硬件攻城狮】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    压力变送器的电信号如何理解

    必须了解的准确数据,日复一日的完成它的压力检测工作,用稳定的测量性能守护生产的效率。 压力变送器能将管道、容器内的压力信号转化为可传输电信号,它的信号采集模块核心部件是压力敏感元件,
    的头像 发表于 09-28 15:42 401次阅读
    压力变送器的<b class='flag-5'>电信号</b>如何理解

    光纤可以传输控制信号

    光纤可以传输控制信号,以下从原理、应用场景、优势、注意事项等方面为你详细分析: 原理 光信号转换:控制信号通常是电信号,在利用光纤
    的头像 发表于 05-28 09:27 747次阅读

    信号发生器AM调制信号分析

    在现代通信技术中,调制技术起着至关重要的作用。特别是AM调制(振幅调制),它是信号传输中常见的一种调制
    的头像 发表于 02-18 17:07 1546次阅读
    <b class='flag-5'>信号</b>发生器AM<b class='flag-5'>调制</b><b class='flag-5'>信号</b>分析

    打算用dsp的28系列与ads8568通讯,请问有无相关的控制代码以及心电信号数据传输的代码?

    您好,我打算用dsp的28系列與ads8568通訊,请问有无相关的控制代码以及心电信号数据传输的代码,以便在此基础上进行开发,或是msp系列的也可以,謝謝
    发表于 02-14 08:11

    ADS1298在采集心电信号时出现了很严重的工频干扰,每个通道都有,而且相对于心电信号来说非常大,怎么解决?

    在采集心电信号时出现了很严重的工频干扰,每个通道都有,而且相对于心电信号来说非常大,心电信号几乎埋没了。求如何解决这个问题
    发表于 02-12 08:37

    调制在音频信号处理中的应用

    处理中,基带信号通常是音频信号,而调制则是将音频信号调制到载波信号上,以实现
    的头像 发表于 01-21 09:36 1429次阅读

    调制信号传输质量的影响

    能力以及系统的带宽利用率等方面。 1. 调制的基本概念 调制是将信息信号的频谱搬移到较高的频率范围,以便在无线或有线信道中传输
    的头像 发表于 01-21 09:25 1630次阅读

    如果要用ADS1293的心电信号通过WIFI传输,能推荐几款芯片吗?

    请问如果要用ADS1293的心电信号通过WIFI传输,能推荐几款芯片吗?CC3000,CC3200可以吗?谢谢
    发表于 01-14 08:20

    请问ADS1293通过SPI传输电信号时是在缓存区收集到24位数据然后利用SPI依次传输出去吗?

    请问ADS1293通过SPI传输电信号时是在缓存区收集到24位数据然后利用SPI依次传输出去吗?支持FIFO传输方式吗?
    发表于 01-14 07:17

    ADS129xECG-FE直接测人体信号时,看不到心电信号,为什么?

    ADS129xECG-FE 直接测人体信号时,看不到心电信号 接心电模拟仪信号很好。
    发表于 01-07 07:12

    ADS1298为什么无法检测到脑电信号

    目前可以检测到心电和眼电,无法检测到脑电信号,已知电极没有问题。 自己做的PCB板,ADS1298配置为HR模式,1KSPS,gain=6,采用2.4V参考电压,关闭右腿驱动,3V单电源供电。将
    发表于 01-03 07:18

    使用ads1292芯片进行心电信号采集,运动采集信号漂移怎么解决?

    使用ads1292芯片进行心电信号采集,传感器是心电夹子,手不动,信号稳定,但是如果握一下拳头,或者随意动一下,心电信号就不在之前的基线上了,信号基线就飘走了,但
    发表于 12-26 08:15

    如何使用ads1298采集人体表面的表面肌电信号

    目前正在做一个项目,使用ads1298采集人体表面的表面肌电信号。能否请大家提供一个简单的demo参考学习?
    发表于 12-20 07:05

    使用ADS1298R kit时,心电信号基线漂移非常严重怎么解决?

    您好,我在使用ADS1298R kit时,当我咳嗽或运动时心电信号基线漂移非常严重,请问有什么解决的办法吗?附件为所测试的信号,另外该信号的干扰还是有些大,请问能有办法降低吗?
    发表于 12-17 06:12

    ADS1298采集心电信号基线漂移是为什么呢?

    ADS1298芯片,采集的心电信号是一个差值,心电信号很明显,为什么基线总在漂呢?是右腿驱动没接好吗?还是是因为人体没接地吗?如需接地,该怎么连接呢?这是从ADS1298输出的数字信号,以电压值形式打印的!
    发表于 12-17 06:10