0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用docker和python工具包datmo为数据科学和AI框架快速配置环境

新机器视觉 来源:新机器视觉 作者:新机器视觉 2021-03-20 08:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

无论是第一次设置TensorFlow的新手数据科学爱好者,还是使用TB级数据的经验丰富的AI工程师,安装库、软件包或者框架总是一个困难又繁琐的过程。但是像Docker这样的集装箱化工具正在彻底改变着软件的可重复性,只不过它们还没有在数据科学和人工智能社区中流行起来。但随着机器学习框架和算法的不断发展,我们将很难花时间专注于学习所有相关的开发人员工具,尤其是那些与模型构建过程没有直接关联的工具。

在这篇文章中,我将展示如何使用docker和python工具包datmo为任何流行的数据科学和AI框架快速配置环境。

一.Docker

1.docker是什么

该软件于2013年由dotCloud 公司推出,发布以来一直备受关注和讨论,被认为可能会改变软件行业。

2.为什么使用docker

如果让你说出软件开发最烦人的事情,那么环境配置必然是其中之一。例如开始编写Python应用程序,那么你的第一个步骤就是在您的计算机上安装Python。软件运行时,你不仅需要让自己计算机上的环境需适合你的应用程序按预期运行,并且还需要与生产环境相匹配。这就是所谓的环境一致性问题。这里面大量的重复劳动不说,还经常出现系统不兼容等莫名其妙的问题,非常令人崩溃。很可能再自己机器上跑通了,但放到用户的环境里,或者服务器上就出问题了。

那么可不可以在软件安装的时候把软件需要的环境一并复制过去呢?虚拟机(virtual machine)就是带环境安装的一种解决方案。它可以在一种操作系统里面运行另一种操作系统,但它的缺点很多:资源占用多、冗余步骤多、启动慢等等。

Docker是一种全新的虚拟化方式。传统虚拟机技术是虚拟出一套硬件后,在其上运行一个完整操作系统,在该系统上再运行所需应用进程;而容器内的应用进程直接运行于宿主的内核,容器内没有自己的内核,而且也没有进行硬件虚拟。因此容器要比传统虚拟机更为轻便。在这样的前提下,它跟传统的虚拟化方式相比具有众多优势:

高效的利用系统资源。

启动速度快。容器里面的应用,直接就是底层系统的一个进程,而不是虚拟机内部的进程。由于直接运行于宿主内核,无需启动完整的操作系统,因此可以做到秒级、甚至毫秒级的启动时间。

确保了应用运行环境一致性。

可以在很多平台上运行,无论是物理机、虚拟机、公有云、私有云,甚至是笔记本,其运行结果是一致的。

容器只要包含用到的组件即可,而虚拟机是整个操作系统的打包,所以容器文件比拟机文件要小很多。

3.如何使用docker

首先要理解Docker的三个概念:镜像、容器、仓库。

镜像(Image)和容器(Container)的关系,就像是面向对象程序设计中的类和实例一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。镜像是只读的,可以用来创建Docker容器,容器看做是一个简易版的Linux环境(包括root用户权限、进程空间、用户空间和网络空间等)和运行在其中的应用程序。

Docker Registry是集中存放镜像文件的场所,提供集中的存储、分发镜像的服务。一个 Docker Registry中可以包含多个仓库(Repository);每个仓库可以包含多个标签(Tag);每个标签对应一个镜像。

最常使用的 Registry 公开服务是官方的 Docker Hub,这也是默认的 Registry,并拥有大量的高质量的官方镜像。

这里以TensorFlow机器学习框架搭建为例讲解如何利用docker快速搭建环境。

首先你需要安装并启动Docker。如果要使用GPU则安装nvidia-docker。

1)直接使用别人做好的镜像

在命令行输入以下两条命令:

docker image pull tensorflow/tensorflow docker run -it -p8888:8888-v /$(pwd)/notebooks:/notebooks tensorflow/tensorflow

第一行命令在Docker Hub上拉取tensorflow官方镜像的cpu版本。

第二行则由此镜像创建一个容器,并在容器里运行jupyter服务。在你的浏览器上打开http://localhost:8888/,就可以在jupyter里导入TensorFlow包了。

-v 参数的作用是将宿主机当前目录下的notebook目录挂载到容器内的/notebooks目录,不添加这个参数的话,当结束 container 的时候,jupyter notebook 里的内容也会随之消失。

我们还可以进入到容器里查看容器的环境配置信息:

docker run -it -p 8888:8888 tensorflow/tensorflow bash

解释一下参数含义:

-i:以交互模式运行容器,通常与 -t 同时使用

-t:为容器重新分配一个伪输入终端,通常与 -i 同时使用

bash:在容器内执行bash命令

root@21cebb7bd6b4:/notebooks# python Python2.7.12(default, Dec 42017,14:50:18) [GCC5.4.020160609] on linux2 Type"help","copyright","credits"or"license"formore information. >>> import tensorflow >>> root@21cebb7bd6b4:/notebooks# python3 Python3.5.2(default, Nov232017,16:37:01) [GCC5.4.020160609] on linux Type"help","copyright","credits"or"license"formore information. >>> import tensorflow Traceback (most recent call last): File"", line1,in ImportError:Nomodulenamed'tensorflow'

2)保存修改后的容器为新的镜像

通过在容器里执行bash命令后我们可以看到,TensorFlow官方提供的这个容器的环境已经安装了Python2和Python3,不过只有在python2上安装了TensorFlow的环境,如果你想在python3运行TensorFlow的话,可以自己手动在容器里进行你喜欢的环境配置。

有没有办法把修改好的容器作为基础镜像,以后需要创建容器的时候都使用这个新的镜像呢?通过命令docker commit [CONTAINER]可以提交容器副本,制作属于你自己的镜像。命令格式如下:

dockercommit-m="description"-a="ahthorName"97744639b45d ahthorName/tensorflow-python3:latest

参数说明:

-m:提交的描述信息

-a:声明镜像作者

97744639b45d:容器ID

ahthorName/tensorflow-python3指定要创建的目标镜像名

docker ps -a这条命令可以列出所有已经创建的未删除的容器。

这里分享一个docker hub 上的镜像docker pull dash00/tensorflow-python3-jupyter,里面已经配置好了python3下TensorFlow的环境,大家可以直接拉取使用。

3)dockerfile定义全新镜像

上面的方法是在基础镜像的容器上做修改创建我们自己的镜像,我们也可以编写一个Dockerfile来构建全新的镜像。我们已经知道Docker镜像是制作Docker容器的模版,而Dockerfile则是一个定义Docker镜像的文件。下面我们尝试编写一个Dockerfile。

Dockerfile定义了容器内的环境配置。在此环境中,对网络接口和磁盘驱动器等资源的访问都是虚拟化的,该环境与系统的其他部分隔离。因此您需要将端口映射到外部的宿主机环境,并具体指定哪些文件是跟外部环境保持一致的。只要在定义好此操作之后,你就可以预期,无论什么时候你运行这个文件,由Dockerfile中定义的应用程序环境的构建都会执行完全相同的操作。

如何创建

这里是一个示例:创建一个空目录,创建一个名为的文件dockerfile,再创建两个文件requirements.txt和app.py和dockerfile放在一起。

以下是dockerfile文件内容,注释里有条语句的解释:

#使用python:2.7-slim作为基础镜像 FROM python:2.7-slim #指定工作目录(或者称为当前目录) WORKDIR /app #将当前文件夹下的内容(requirements.txt和app.py)复制到容器里的/app目录下 ADD . /app #安装在requirements.txt文件里指定的python包 RUN pip install --trusted-host pypi.python.org -r requirements.txt #向外部环境暴露80端口 EXPOSE 80 #设置环境变量 ENV NAME World #一旦容器开始运行,则运行app.py作为容器的主进程 CMD ["python", "app.py"]

FROM指定基础镜像,是必备的指令,并且必须是第一条指令。在 Docker Store 上有非常多的高质量的官方镜像提供给我们使用。

RUN 指令是用来执行命令行命令的。

CMD 指令用于指定默认的容器主进程的启动命令。有别于传统虚拟机概念,对于容器而言,其启动程序就是容器的主要进程,容器就是为了主进程而存在的。

有了Dockerfile 文件,我们就可以使用docker image build命令创建 image 文件了。运行:

#-t参数用来指定 image 文件的名字 Docker build -t friendlyhello

如果运行成功,使用docker image ls命令就可以看到新生成的 image 文件friendlyhello了,它位于你机器的本地Docker镜像注册表中。

docker imagels REPOSITORY TAG IMAGE ID friendlyhello latest 326387cea398

二.Datmo

如果你觉得上面描述的关于docker的操作依然十分麻烦的话,我还有一个工具推荐给你,那就是datmo。Datmo充分利用了Docker,简化了流程,帮助您快速轻松地运行AI框架。下面是使用流程:

1.前提条件

安装并启动Docker(https://docs.docker.com/install/#supported-platforms)

(如果使用GPU)安装CUDA 9.0(https://developer.nvidia.com/cuda-90-download-archive)

(如果使用GPU)安装nvidia-docker(https://github.com/datmo/datmo/wiki/Datmo-GPU-support-and-setup)

2.安装datmo

就像任何python包一样,使用以下命令从终端安装datmo:

$ pip install datmo

3.初始化datmo项目

在终端中,打开项目文件夹。然后,输入以下命令:

$ datmo init

然后,你将被要求提供项目的名称和描述。

4.启动环境设置

在输入名称和描述后,datmo将询问是否要设置环境 - 输入y并按enter。

5.选择系统驱动程序(CPU或GPU)

然后,CLI将询问希望为您的环境选择哪些系统驱动程序。如果不打算使用GPU,请选择cpu。

6.选择一个环境

接下来,你将从众多预打包环境中选择一种。只需在提示中回复您要使用的环境的编号或ID。

7.选择编程语言版本

上述许多环境都有不同的版本,具体取决于你计划使用的语言和版本。

例如,在选择keras-tensorflow环境后,我将面临以下提示,询问我是否要使用Python 2.7或Python 3.5。

8.启动工作区

现在是时候启动你的工作区了。选择你要使用的工作区,然后在终端中输入相应的命令。

Jupyter Notebook - $ datmo notebook JupyterLab - $ datmo jupyterlab RStudio -  $ datmo rstudio(在R-base环境中可用) 终端模式 - $ datmo terminal

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 容器
    +关注

    关注

    0

    文章

    521

    浏览量

    22845
  • 应用程序
    +关注

    关注

    38

    文章

    3342

    浏览量

    59977
  • python
    +关注

    关注

    57

    文章

    4860

    浏览量

    89647

原文标题:5分钟配置好你的AI开发环境

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    PYQT 应用程序框架及开发工具

    大家好,本团队此次分享的内容开发过程中使用到的PYQT 应用程序框架及开发工具。 pYqt 是一个多平台的 python 图形用户界面应用程序
    发表于 10-29 07:15

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI科学应用

    主要步骤: ①溯因②假说③实验 1、科学推理的类型 ①演绎②归纳 2、自动化科学发现框架 AI-笛卡儿-----自动化科学发现
    发表于 09-17 11:45

    TuyaOpen开源 + DshanPi-A1(RK3576)开发板的Tuya IoT平台接入与AI大模型整合方案(笔记)

    : 一、登录DshanPi-A1开发板 确保已通过SSH或其他方式连接到目标开发板环境。参考文档(https://wiki.dshanpi.org/) 安装依赖工具 执行以下命令安装必要工具包: sudo
    发表于 09-15 10:35

    Docker生产环境安全配置指南

    据统计,超过60%的企业在Docker生产环境中存在严重安全漏洞。本文将揭示那些容易被忽视但致命的安全隐患,并提供完整的企业级解决方案。
    的头像 发表于 09-02 16:27 808次阅读

    【HZ-T536开发板免费体验】Docker 环境安装及应用

    一、检查 Docker 安装状态 板子提示“command not found”或无版本信息,说明 Docker 未安装,如有需要请自行安装 二、Docker 环境安装 首先更新系统
    发表于 09-01 17:59

    RK3576开发板NPUrknn-toolkit2环境搭建和使用docker环境安装

    RK3576开发板NPUrknn-toolkit2环境搭建和使用docker环境安装
    的头像 发表于 06-18 15:22 989次阅读
    迅<b class='flag-5'>为</b>RK3576开发板NPUrknn-toolkit2<b class='flag-5'>环境</b>搭建和使用<b class='flag-5'>docker</b><b class='flag-5'>环境</b>安装

    Deepseek海思SD3403边缘计算AI产品系统

    海思SD3403边缘计算AI框架,提供了一套开放式AI训练产品工具包,解决客户低成本AI系统,针对差异化
    发表于 04-28 11:05

    rs232转profinet网关接阀门快速配置案例

    在工业自动化领域,不同通信协议之间的转换始终是一个技术挑战。 今天,我们要探讨的主角是rs232转profinet网关接阀门快速配置案例。
    的头像 发表于 03-27 10:54 522次阅读
    rs232转profinet网关接阀门<b class='flag-5'>快速配置</b>案例

    基于Docker镜像逆向生成Dockerfile

    在本文中, 我们将通过理解Docker镜像如何存储数据, 以及如何使用工具查看镜像方方面面的信息来逆向工程一个Docker镜像; 以及如何使用Pyt
    的头像 发表于 03-10 09:45 1240次阅读
    基于<b class='flag-5'>Docker</b>镜像逆向生成Dockerfile

    构建开源OpenVINO™工具包后,使用MYRIAD插件成功运行演示时报错怎么解决?

    构建开源OpenVINO™工具包后,使用 MYRIAD 插件成功运行演示。 使用 CPU 插件运行演示时遇到错误: Cannot load library \'libarmPlugin.so
    发表于 03-05 09:57

    docker配置网络代理

    有时因为网络原因,比如公司 NAT,或其它啥的,需要使用代理。Docker 的代理配置,略显复杂,因为有三种场景。但基本原理都是一致的,都是利用 Linux 的 http_proxy 等环境变量。
    的头像 发表于 03-03 17:18 870次阅读

    云计算开发工具包的功能

    随着云计算技术的不断成熟,越来越多的企业开始将应用和服务迁移到云端,以享受弹性计算资源、高可用性和成本效益等优势。为了加速这一进程,云计算服务提供商推出了各种开发工具包。下面,AI部落小编带您了解云计算开发工具包的主要功能。
    的头像 发表于 02-21 11:02 559次阅读

    云端AI开发环境的优势

    当下,云端AI开发环境不仅提供了强大的计算能力、灵活的资源分配和便捷的数据管理,还集成了丰富的AI工具
    的头像 发表于 01-16 10:48 745次阅读

    Labview声音和振动工具包示例文件Sound Level

    Labview 声音和振动工具包示例文件,声压测试,有模拟和DAQ两个文件。
    发表于 01-05 09:15 5次下载

    最新Simplicity SDK软件开发工具包发布

    最新的SimplicitySDK软件开发工具包已经发布!此次更新针对SiliconLabs(芯科科技)第二代无线开发平台带来了包括蓝牙6.0的信道探测(Channel Sounding
    的头像 发表于 12-24 09:47 1517次阅读