0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

模拟芯片能够模仿人脑神经元和突触的活动

MEMS 来源:新智元 作者:新智元 2021-02-20 09:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人脑一直给研究者提供灵感,神经形态计算受到人脑的低功耗和快速计算特点启发而出现,它或许会是超大规模机器和人工智能应用(如自动驾驶)未来的基石。 神经形态芯片的最初思想可以追溯到加州理工学院的Carver Mead 教授在1990年发表的一篇论文。

Mead在论文中提出,模拟芯片能够模仿人脑神经元和突触的活动,与模拟芯片的二进制本质不同,模拟芯片是一种输出可以变化的芯片。

但是目前,神经形态计算的发展受到传统电子学固有局限的阻碍。 最近,由英国阿斯顿大学研究人员发起的一个新项目「Neu-ChiP」,展示了如何通过教授在微芯片上培育的人类脑干细胞来解决数据问题,从而为机器学习技术的「范式转变」奠定基础。

该项目为期3年,获得了欧盟委员会的「未来与新兴技术」(Future and Emerging Technologies,FET)项目350万欧元(约2700万人民币)的资助; 英国、法国、西班牙、瑞士和以色列的高校和机构也参与其中,包括英国罗浮堡大学、巴塞罗那大学、法国国家科学研究中心、以色列理工学院和3Brain AG 公司。

芯片上的大脑

在Neu-ChiP项目中,研究小组将把类似于人类大脑皮层的干细胞网络分层放在微芯片上。然后通过向细胞发射不断变化的光束模式来刺激细胞。

项目利用先进的3D电脑模型可以观察细胞发生的任何变化,了解他们的适应能力如何。 这模仿了人类大脑的可塑性,可以迅速适应新的信息。 据悉,该项目将在培养皿中设计神经元回路并训练它们进行数据分析的能力,将为大脑如何计算信息并找到解决方案提供新的见解。 开发的技术甚至可能有助于设计独特的人机界面。 而且,该项目不仅要建立一个由许多非常复杂的人类神经细胞组成的系统模型,研究人员还将尝试超越这个模型,将神经系统驱动到一个能够进行非平凡计算的状态。

芯片上的大脑:致力于突破人工智能的界限(cr: 3Brain AG) 项目的生物学专家表示,这个项目将致力于寻求建立神经形态电路,并将新兴的电子设备与生物神经元结合起来。 在合成生物学的背景下,看到活细胞中的计算是如何从数字化通过模拟进化到神经形态计算范式,这将会令人印象深刻。 阿斯顿大学数学教授David Saad说: 「我们的目标是利用人类大脑无与伦比的计算能力,极大地提高计算机帮助我们解决复杂问题的能力。我们相信,这个项目有可能突破目前处理能力和能源消耗的局限,从而带来机器学习技术的范式转变。」

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经元
    +关注

    关注

    1

    文章

    369

    浏览量

    19117
  • 微芯片
    +关注

    关注

    0

    文章

    61

    浏览量

    14106
  • 模拟芯片
    +关注

    关注

    8

    文章

    683

    浏览量

    51969

原文标题:芯片上的大脑:英国科学家将类人脑干细胞编织在芯片上

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经元设备和脑机接口有何渊源?

    HUIYING神经元设备的发展历程概述神经元设备的发展经历了从基础信号检测到多功能智能集成的演进过程。自1920年代脑电图(EEG)信号首次被发现以来,神经电极技术逐步发展,如1957年出现的钨微丝
    的头像 发表于 11-03 18:03 1189次阅读
    <b class='flag-5'>神经元</b>设备和脑机接口有何渊源?

    脉冲神经元模型的硬件实现

    ;LIF 神经元模块是模拟神经元行为的关键模块;每个神经核包括两个存储模块,其中神经元状态存储模块存储 逻辑
    发表于 10-24 08:27

    SNN加速器内部神经元数据连接方式

    所谓地址事件表达(Address Event Representation,AER),是指通过地址的方式将事件进行表达,然后按时间顺序复用到总线上。已知生物神经元产生脉冲的频率比数字电路要低很多
    发表于 10-24 07:34

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑中神经元之间的动态连接来处理信息,这种网络能够顺序处理数
    的头像 发表于 09-28 10:03 726次阅读
    液态<b class='flag-5'>神经</b>网络(LNN):时间连续性与动态适应性的<b class='flag-5'>神经</b>网络

    时域干涉电刺激tTIS可持续增强运动皮层活动

    HUIYING初级运动皮层(M1)自发神经活动概述定义:初级运动皮层(图1)自发神经活动指的是在没有外部任务或刺激的情况下,大脑神经元的自发
    的头像 发表于 09-22 18:04 674次阅读
    时域干涉电刺激tTIS可持续增强运动皮层<b class='flag-5'>活动</b>?

    【「AI芯片:科技探索与AGI愿景」阅读体验】+具身智能芯片

    的好处: ①使处理速度变得非常快 ②更加安全 3、触觉 具身智能的关键之一:了解周围的外部刺激。 面向触觉感知的神经形态模型主要用于模拟手部皮肤触觉感知器在外部压力刺激下的神经活动
    发表于 09-18 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    几年神经元计算及类脑芯片的重大进展。 一、云端使用的神经形态计算与类脑芯片 神经形态计算旨在设计和构建包括硬件和软件在内的计算机系统,通过
    发表于 09-17 16:43

    【「AI芯片:科技探索与AGI愿景」阅读体验】+化学或生物方法实现AI

    和养护 ⑥实验和分析 ⑦不断优化和改进 4)“片上大脑”芯片用于生成新的AI算法 片上大脑神经芯片:具有4000多个电极,能够同时记录小鼠数千个神经
    发表于 09-15 17:29

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    的不同。随着AI热潮的兴起,大脑的抽象模型已被提炼成各种的AI算法,并使用半导体芯片技术加以实现。 而大脑是一个由无数神经元通过突触连接而成的复杂网络,是极其复杂和精密的。大脑在本质上就是一台湿润的软组织
    发表于 09-06 19:12

    新一代神经拟态类脑计算机“悟空”发布,神经元数量超20亿

    拟态芯片的类脑计算机,神经元数量接近猕猴大脑规模,典型运行状态下功耗仅约2000瓦。传统计算机处理人脑任务需高达100兆瓦功耗,相比之下“悟空”低功耗优势显著。     硬件上,“悟空”由15台刀片式
    的头像 发表于 08-06 07:57 7303次阅读
    新一代<b class='flag-5'>神经</b>拟态类脑计算机“悟空”发布,<b class='flag-5'>神经元</b>数量超20亿

    无刷直流电机单神经元自适应智能控制系统

    摘要:针对无刷直流电机(BLDCM)设计了一种可在线学习的单神经元自适应比例-积分-微分(PID)智能控制器,通过有监督的 Hebb学习规则调整权值,每次采样根据反馈误差对神经元权值进行调整,以实现
    发表于 06-26 13:36

    无刷直流电机单神经元PI控制器的设计

    摘要:研究了一种基于专家系统的单神经元PI控制器,并将其应用于无刷直流电机调速系统中。控制器实现了PI参数的在线调整,在具有PID控制器良好动态性能的同时,减少微分项对系统稳态运行时的影响,并较好
    发表于 06-26 13:34

    ADI人形机器人的“感觉神经 + 电力神经元”核心芯片方案盘点

    作为全球领先的模拟/混合信号芯片公司,凭借其在 传感器、信号链、精密模拟、功率管理与接口技术 方面的深厚积累,已成为人形机器人核心组件方案的重要供应商。 人形机器人核心模块中ADI的贡献: 模块 关键
    的头像 发表于 06-17 13:41 2325次阅读

    【「芯片通识课:一本书读懂芯片技术」阅读体验】从deepseek看今天芯片发展

    的: 神经网络处理器(NPU)是一种模仿人脑神经网络的电路系统,是实现人工智能中神经网络计算的专用处理器,主要用于人工智能深度学习模型的加速训练。人工智能要
    发表于 04-02 17:25

    王欣然教授团队提出基于二维材料的高效稀疏神经网络硬件方案

    。   稀疏性 (Sparsity) 是人脑中的神经突触的本征属性。在大脑发育过程中,超过一半的突触会以细粒度和非结构化的方式被剪枝 (Pruning),这是
    的头像 发表于 01-13 10:41 918次阅读
    王欣然教授团队提出基于二维材料的高效稀疏<b class='flag-5'>神经</b>网络硬件方案