0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

后FinFET时代的技术演进说明

电子设计 来源:电子设计 作者:电子设计 2020-12-24 15:54 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

FinFET晶体管架构是当今半导体行业的主力军。但是,随着器件的持续微缩,短沟道效应迫使业界引入新的晶体管架构。在本文中,IMEC的3D混合微缩项目总监Julien Ryckaert勾勒出了向2nm及以下技术节点发展的演进之路。在这条令人振奋的道路上,他介绍了Nanosheet晶体管,Forksheet器件和CFET。其中一部分内容已在2019 IEEE国际电子器件会议(IEDM)上发表。

FinFET:今天最先进的晶体管

在每一代新技术上,芯片制造商都能够将晶体管规格微缩0.7倍,从而实现15%的性能提升,50%的面积减小,40%的功耗降低以及35%的成本降低。几年前,业界为了维持这种微缩路径,从“老式”平面MOSFET过渡到FinFET晶体管架构。在FinFET中,源极和漏极之间的沟道为fin的形式。栅极环绕该3D沟道,可从沟道的3个侧面进行控制。这种多栅极结构可以抑制在栅极长度降低时带来的短沟道效应。

出色的短沟道控制能力至关重要,因为它奠定了器件微缩的基础,允许更短的沟道长度和更低的工作电压。

2012年,首款商用22nm FinFET面世。从那时起,FinFET体系结构进行了持续的改进,以提高性能并减小面积。例如,FinFET的3D特性允许增加fin片高度,从而在相同的面积上获得更高的器件驱动电流。如今,业界正在加快生产的10nm / 7nm芯片也是基于FinFET。在最先进的节点的标准单元大多是6T单元高度,也就是是每个器件最多拥有2根fin。

Nanosheet:器件进化第一步

但是,随着工艺微缩至5nm节点,FinFET架构可能不再是主流。在沟道长度小到一定值时,FinFET结构又无法提供足够的静电控制。最重要的是,向低轨标准单元的演进需要向单fin器件过渡,即使fin高度进一步增加,单fin器件也无法提供足够的驱动电流。

随着技术节点的不断变化,半导体行业并不急于转向其他晶体管架构。一些公司甚至可能决定在某些节点停留更长的时间。但是,仍然存在需要最新的“通用” CMOS解决方案的应用,例如机器学习,大数据分析和数据中心服务器。通过这种通用CMOS解决方案,可以在相同技术节点中使用相同的晶体管架构来实现芯片上所有的功能。

在这里,Nanosheet可以来帮助解围。Nanosheet可以被视为FinFET器件的自然演变版本。想象一下将FinFET的沟道水平切割成多个单独Nanosheet沟道,栅极也会完全环绕沟道。与FinFET相比,Nanosheet的这种GAA特性提供了出色的沟道控制能力。同时,沟道在三维中的极佳分布使得单位面积的有效驱动电流得以优化。

从FinFET到Nanosheet的自然演变。

需要微缩助推器

在6T和5T的低单元高度下,向Nanosheet器件的迁移变得最佳,因为在这种情况下,fin的减少会降低传统基于FinFET的单元中的驱动电流。

但是,如果不引入结构化微缩助推器(如埋入式电源轨和环绕式接触),就无法将单元高度从6T减小到5T。

电源轨为芯片的不同组件提供电源,并且一般由BEOL中Mint和M1层提供。但是,它们在那里占据了很大的空间。在嵌入式电源轨结构中,电源轨埋在芯片的前段,以帮助释放互连的布线资源。此外,它们为采用节距微缩而增加BEOL电阻的技术提供了较低的电阻局部电流分布。BEOL没有电源轨后,可以将标准单元的高度从6T进一步降低到5T。

下一步:缩小p和n之间的间距

随着走向更小的轨道高度的旅程的继续,单元高度的进一步减小将要求标准单元内nFET和pFET器件之间的间距更小。但是,对于FinFET和Nanosheet而言,工艺限制了这些n和p器件之间的间距。例如,在FinFET架构中,通常在n和p之间需要2个dummy fin的间距,这最多消耗总可用空间的40-50%。

为了扩大这些器件的可微缩性,IMEC最近提出了一种创新的架构,称为Forksheet器件。Forksheet可以被认为是Nanosheet的自然延伸。

与Nanosheet相比,现在沟道由叉形栅极结构控制,这是通过在栅极图案化之前在p和nMOS器件之间引入“介电墙”来实现的。该墙将p栅沟槽与n栅沟槽物理隔离,从而允许更紧密的n到p间距。

从FinFET到Nanosheet再到Forksheet的自然演变。

用于制造Forksheet的工艺流程与用于制造Nanosheet的工艺流程相似,仅增加一些额外的工艺步骤。n和p之间的介电隔离还具有一些工艺优势,例如填充功函数金属的工艺更简化。在此基础上,由于大幅减少了n到p的间距,预计该Forksheet具有更佳的面积和性能的可微缩性。

Forksheet工艺流程中的关键步骤,即有源区形成后“介电墙”的形成步骤。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    336

    文章

    29985

    浏览量

    258297
  • IC设计
    +关注

    关注

    38

    文章

    1369

    浏览量

    107914
  • 晶体管
    +关注

    关注

    78

    文章

    10257

    浏览量

    146285
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    从模拟到数字——电话配线架的技术演进

    )。 无法处理数据、视频等复合信号。 案例: 早期企业电话总机室中,技术人员通过手动插拔跳线调整分机号码,类似“电话线路拼图”。 2. 数字时代:电子配线架(E-MDF) 时间:2000年。 特点: 集成电子标签、远程管理功能
    的头像 发表于 10-14 10:12 218次阅读

    JEDSD204B标准verilog实现-协议演进

    JEDSD204B标准verilog实现3-协议演进 本文对204协议的演进、子类的差异进行简要说明,后续将直接开始数据流的处理和实现,对协议要求的电器特性感兴趣的小伙伴自行查看协议第四章
    发表于 09-05 21:18

    突破边界:先进封装时代下光学检测技术的创新演进

    随着半导体器件向更精密的封装方案持续演进,传统光学检测技术正逐渐触及物理与计算的双重边界。对2.5D/3D集成、混合键合及晶圆级工艺的依赖日益加深,使得缺陷检测的一致性与时效性面临严峻挑战——若无
    的头像 发表于 08-19 13:47 720次阅读
    突破边界:先进封装<b class='flag-5'>时代</b>下光学检测<b class='flag-5'>技术</b>的创新<b class='flag-5'>演进</b>

    OpenTenBase技术创新与演进分论坛成功举办

    近日,2025开放原子开源生态大会——OpenTenBase技术创新与演进分论坛在北京成功举办。本次论坛汇聚生态伙伴企业、技术专家、社区成员及高校代表,围绕OpenTenBase和TXSQL的版本更新、
    的头像 发表于 07-28 17:32 965次阅读

    东进技术发布《量子密码技术白皮书(2025版)》

    ,介绍了中美两国量子密码发展现状,重点阐述东进量子密码策略,旨在为行业提供有益的参考和实践指引。量子密码技术:开启信息安全新时代
    的头像 发表于 07-02 10:38 985次阅读
    东进<b class='flag-5'>技术</b>发布《<b class='flag-5'>后</b>量子密码<b class='flag-5'>技术</b>白皮书(2025版)》

    体硅FinFET和SOI FinFET的差异

    三维立体结构成为行业主流。然而在FinFET阵营内部,一场关于“地基材料”的技术路线竞争悄然展开——这便是Bulk Silicon(体硅) 与SOI(绝缘体上硅) 两大技术的对决。这场对决不仅关乎性能极限的突破,更牵动着芯片成本
    的头像 发表于 06-25 16:49 1673次阅读
    体硅<b class='flag-5'>FinFET</b>和SOI <b class='flag-5'>FinFET</b>的差异

    FinFET与GAA结构的差异及其影响

    本文介绍了当半导体技术FinFET转向GAA(Gate-All-Around)时工艺面临的影响。
    的头像 发表于 05-21 10:51 3007次阅读
    <b class='flag-5'>FinFET</b>与GAA结构的差异及其影响

    动态IP技术演进:从网络基石到智能连接时代的创新引擎

    在万物互联的智能时代,IP地址早已突破"网络身份证"的单一属性,成为支撑数字化变革的核心基础设施。动态IP技术作为网络资源分配的底层逻辑,正经历着从工具性功能向智能化服务的深刻转型。本文将从技术
    的头像 发表于 05-20 16:16 442次阅读

    FinFET技术在晶圆制造中的优势

    本文通过介绍传统平面晶体管的局限性,从而引入FinFET技术的原理、工艺和优势。
    的头像 发表于 04-14 17:23 1260次阅读
    <b class='flag-5'>FinFET</b><b class='flag-5'>技术</b>在晶圆制造中的优势

    华为成功举办5G-A产业演进峰会

    在MWC25期间,华为成功举办“5G-A产业演进”峰会,并邀请到全球产业领袖、生态伙伴、运营商客户基于移动AI时代带来的机遇和挑战,探讨5G-A产业发展,围绕AI新联接、AI新体验、AI新价值流量的变化,共话5G/5G-A网络演进
    的头像 发表于 03-07 11:12 900次阅读

    从CPU到GPU:渲染技术演进和趋势

    渲染技术是计算机图形学的核心内容之一,它是将三维场景转换为二维图像的过程。渲染技术一直在不断演进,从最初的CPU渲染到后来的GPU渲染,性能和质量都有了显著提升。一、从CPU到GPU:技术
    的头像 发表于 02-21 11:11 1376次阅读
    从CPU到GPU:渲染<b class='flag-5'>技术</b>的<b class='flag-5'>演进</b>和趋势

    AMAZINGIC晶焱科技:疫情时代来临,E-Bike已成为生活习惯

    AMAZINGIC晶焱科技:疫情时代来临,E-Bike已成为生活习惯
    的头像 发表于 02-19 22:56 544次阅读
    AMAZINGIC晶焱科技:<b class='flag-5'>后</b>疫情<b class='flag-5'>时代</b>来临,E-Bike已成为生活习惯

    FinFET制造工艺的具体步骤

    本文介绍了FinFET(鳍式场效应晶体管)制造过程中栅极高介电常数金属栅极工艺的具体步骤。
    的头像 发表于 01-20 11:02 4893次阅读
    <b class='flag-5'>FinFET</b>制造工艺的具体步骤

    FinFet Process Flow-源漏极是怎样形成的

    本文介绍了FinFet Process Flow-源漏极是怎样形成的。 在FinFET制造工艺中,当完成伪栅极结构,接下来的关键步骤是形成源漏极(Source/Drain)。这一阶段对于确保器件
    的头像 发表于 01-17 11:00 2512次阅读
    <b class='flag-5'>FinFet</b> Process Flow-源漏极是怎样形成的

    FinFet Process Flow—哑栅极的形成

    FinFET的栅极宽度,这对于控制电流流动至关重要。在22nm及以下技术节点中,由于鳍片尺寸非常小,通常通过SADP(Self-Aligned Double Patterning)或SAQP
    的头像 发表于 01-14 13:55 2176次阅读
    <b class='flag-5'>FinFet</b> Process Flow—哑栅极的形成