0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

最大限度降低寄生电容对放大器稳定性影响的三种方案

电子设计 来源:电子技术设计 作者:Tom Kugelstadt 2021-02-23 16:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

由于高增益峰值及其他各种原因,电流反馈(CFB)放大器可能变的不稳定,极端情况甚至进入振荡状态。放大器不稳定的原因有两个,反馈电阻值过低以及引入对地的寄生输入、输出电容。小电容会导致放大器的频率响应在高频时达到峰值,同时高电容值会迫使器件进入自持振荡,忽略任何输入信号的激励。

本文将介绍如何确保放大器稳定性的设计技巧,包括须知与禁忌,无需深入研究基本数学原理即可设计出稳定的放大器电路。

最大限度降低寄生电容对放大器稳定性影响的方法主要有三种:

良好的布线技术,以最大限度减少寄生电路板和探头电容。

使用CFB放大器厂商规定的反馈和增益电阻值,保证提供足够的相位裕度以承受较小的寄生电容。

利用补偿技术,最大限度降低频率响应峰值和脉冲响应过冲。

电路板布线技巧

优化电路性能,使CFB放大器效果达到最佳,需特别注意:电路板布线寄生、外部元件类型和电阻值。以下建议有助于优化电路性能(参考图1和图2):

使用去耦电容对电源引脚进行低频和高频缓冲。对于高频,并联使用100nF和100pF电容,并将它们安置在距离电源引脚不到6mm的位置。对于低频,使用6.8μF钽电容,可距离放大器更远,并允许在其它设备间共享。避免使用窄电源和接地走线,尽量减少走线电感,特别是电源引脚和去耦电容间的走线电感。

由于放大器的输出和反相输入引脚对寄生电容最敏感,因此将输出电阻RS(如需要)靠近输出引脚处,反馈和增益电阻(RF和RG)靠近反相输入,将各自引脚与所有走线电容隔离。

在非反相输入处增加RIN和CIN占位符,以补偿由反相输入端的寄生电容(CPI)引起的增益峰值。

确定是否需要输出隔离电阻。低寄生电容负载(<5pF)通常不需要RS。此外,更高的寄生输出电容可在没有RS的情况下驱动,但需要更高的闭环增益设置。

保持输入和输出引脚周围无接地层和无电源层的区域,尽量减轻交流接地相关电容的积聚。在电路板的其它地方,接地层和电源层应保持完好。

通过100Ω电阻将每个测试点连接到要测量的走线,并隔离探针电容示波器与信号走线。

o4YBAGA0uqCAYCVtAAFZzwaTCTE552.png

图1:具备寄生电容和补偿元件RS、RIN及CIN的CFB放大器。

pIYBAGA0urGASq2sAAM-Xk6v3k4357.png

图2:无接地窗口的双层PCB推荐布线。

使用既定RF值

CFB放大器厂商通常指定多个RF值,每个RF值对应不同的增益设置。使用推荐的电阻值可确保最佳性能,而不会带来(或造成很小幅度的)峰值增益或带宽损失;偏离这些值则会改变放大器性能。图3中显示了在信号增益为2时使用不同RF值的情况,可见,当指定值RF=1.1kΩ时达到最佳性能。但当RF提高至1.5kΩ时,出现带宽损失,而当RF降低到600Ω时,会产生增益峰值(图4)。

因此,要获得最佳性能,请遵循厂商建议的RF值。

pIYBAGA0usCAbobCAAQmKrg40o8153.png

图3:使用数据表中指定的RF值可确保最佳性能。

o4YBAGA0us2ATtCmAAPy-oISTE4741.png

图4:偏离指定的RF值会导致增益达到峰值或降低带宽。

补偿寄生电容的影响

为区分输入端(CPI)和输出端(CPO)的寄生电容,可进行脉冲响应测试。CPI通常小于CPO,并会导致短暂信号过冲;而CPO通常会造成信号振铃现象延长(图5)。当然,若CPI> CPO,情况则会反转;然而这种情况很少发生。

pIYBAGA0uuCAUHe6AAQ8iF8-M4s288.png

图5:CPI引起的信号过冲与CPO导致的信号振铃现象。

寄生输入电容CPI

反相输入端(CPI)的寄生电容通常较小(0.5至5pF),由布线杂散电容和表面贴装电阻RG的固有分流电容组成。CPI、RF、RG共同在放大器反馈路径中形成低通特性,在放大器传递函数VO/VI中转换为高通特性。

这种高通特性可在非反相放大器输入端用R-C低通滤波器进行补偿。为此,非反相输入端的输入电容须与反相输入端的寄生电容相匹配(CIN= CPI),且RIN值必须等于反馈和增益电阻的并联值(RIN= RF||RG)。

pIYBAGA0uu2AfmYcAAPsYZDdE7I920.png

图6:通过RIN-CIN消除增益峰值。

pIYBAGA0uvmAd_NpAAMzBKw0b_Y843.png

图7:通过RIN-CIN减少过冲。

图6和图7显示了图1中电路的频率和脉冲响应。当放大器以G=2运行时,其中RF= RG为厂商规定的最佳性能电阻值。图6和图7中的其它观察结果包括:

当CPI= 0时,黑色曲线所示的频率和脉冲响应既未出现增益峰值也未出现过冲。对于10MHz的±100mV测试输入,标称增益为6dB,脉冲幅度为±200mV。

当CPI= 5pF时,红色曲线所示的频率和脉冲响应显示增益峰值接近21dB,过冲为±1V。

在补偿情况下(蓝色曲线),当CIN= CPI= 5pF,且RIN= RF||RG= RF/2时,频率和脉冲响应分别显示增益峰值和过冲降低至0.5dB和±45mV。

寄生输出电容CPO

放大器输出端(CPO)寄生电容还包含布线杂散电容,但大部分通常来自较大的负载电容,例如瞬态抑制器和电流导引二极管的结电容、电缆电容,模数转换器及其它放大器的输入电容。因此,CPO的总值可低至20pF,也可能达到几个100pF。

综上所述,通常较小的寄生输出电容对传递函数几乎没有影响,但较大的CPO值会导致高增益峰值,并且脉冲响应会延长振铃。图8和图9显示了输出电容为20pF的影响,其增益峰值小于1dB,且仅出现低于30mV的小过冲。若需要补偿CPO,则稍微提高RF、RG值即可。

pIYBAGA0uwuAWlPzAAOgGHSGJd4214.png

图8:利用较高RF值补偿较小CPO值。

pIYBAGA0uxiAWOrAAANWAmVSuA8153.png

图9:补偿结果显示几乎无法区分的脉冲响应。

与此相反,补偿较大的输出电容十分必要。图10和图11显示了在未进行补偿的情况下,传递函数达到约15dB的增益峰值,且CPO为500pF时(红色曲线)脉冲响应中的长时间信号振铃。即使提高RF、RG电阻值,改善效果也十分有限(蓝色曲线)。不过,安置串联电阻(RS)可将放大器输出与容性负载隔离(参见图1电路)。在此模拟中,需要一个仅为3.9Ω的小RS值将增益峰降至0.5dB以下,同时将信号过冲从±400mV降低到±50mV。

pIYBAGA0uyaATvSVAAPZkMiFAws481.png

图10:高CPO值需要额外的隔离电阻RS。

o4YBAGA0uzOASpBYAAOioV2FXcc818.png

图11:通过RS补偿显著改善脉冲响应。

结论

本文中重点探讨的设计以确保放大器的稳定性,总结如下:

应用良好的布线技术将寄生电容降至最低

使用6.8μF、100nF和100pF电容器为电源电压提供低频和高频缓冲

在测试点和待测量走线间插入100Ω电阻,隔离探针电容与信号走线

使用数据表中指定的电阻值

进行初始脉冲响应测试,以区分寄生输入和输出电容

通过R-C低通滤波器补偿非反相信号输入端的寄生输入电容

提高RF和RG值,补偿较小寄生输出电容

插入低值隔离电阻RS,补偿较大的寄生输出电容

参考资料

1.AN1306,如何规避轨到轨CMOS放大器的不稳定性,2007年9月

2. AN9663,从电压反馈转换为电流反馈放大器,2006年3月

3. AN9420,电流反馈放大器理论与应用,1995年4月

4. AN9787,一种了解电流反馈放大器的直观方法,2004年10月

5. AN1106,实际电流反馈放大器设计参考,1998年3月

关于作者

Tom Kugelstadt是瑞萨电子(美国)公司首席应用工程师,为工业系统定义了新的高性能模拟产品。他拥有法兰克福应用科学大学硕士学位,在模拟电路设计领域具备超过35年经验。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    146

    文章

    14302

    浏览量

    221053
  • 寄生电容
    +关注

    关注

    1

    文章

    301

    浏览量

    20205
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    国巨CQ0201系列高频电容:高频电路的小型化高稳定性解决方案

    在高频电子电路中,电容的性能直接影响信号完整性、滤波效率及系统稳定性,其Q值(品质因数)、温度稳定性寄生参数等成为关键指标。国巨(YAGEO)作为全球领先的被动元件厂商,推出的CQ0
    的头像 发表于 10-13 13:47 450次阅读
    国巨CQ0201系列高频<b class='flag-5'>电容</b>:高频电路的小型化高<b class='flag-5'>稳定性</b>解决<b class='flag-5'>方案</b>

    高压放大器稳定性与振铃

    在实际的操作使用中,高压驱动电路时遇到了稳定性问题:输出波形出现 振荡或振铃。且高压放大器本身带宽有限、压摆率受限,驱动容性负载时矛盾 会更突出。从物理本质讲清楚:相位裕度不足是根源。 首先相位裕度
    的头像 发表于 10-10 11:38 232次阅读

    探究薄膜电容的温度稳定性,适应复杂环境变化

    从-55℃延伸至125℃甚至更高。本文将深入分析薄膜电容温度稳定性的技术原理、材料选择、结构设计及实际应用中的挑战与解决方案。 ### 一、温度对薄膜电容性能的影响机制 温度变化主要通
    的头像 发表于 08-11 17:08 1063次阅读

    运算放大器测试基础:测试运算放大器需要稳定的测试环路

    。使用 100kΩ 电阻器可将噪声降低至 27μVp-p。因此,降低电阻器值可降低噪声,但被测量器件输出端的寄生电阻器负载随后会更明显。 电压失调 VOS 测试是测量运算
    发表于 06-06 13:52

    【干货分享】电源功率器件篇:变压器寄生电容对高压充电机输出功率影响

    ),均会显著增加寄生电容。 工作频率:高频下寄生电容阻抗降低( XC=1/ωC ),导致分流效应与谐振风险加剧。 、 对高压充电机输出功率的影响 1 、谐振导致输出功率波动
    发表于 05-30 11:31

    如何最大限度地扩大基于氮化镓 (GaN) 功率放大器的雷达系统的探测距离

    (SNR),“脉冲衰减”成为一个问题。 虽然与采用旧工艺的器件相比,基于氮化镓 (GaN) 的功率放大器 (PA) 具有显著的效率和其他优势,但设计人员仍需采用系统级方法,最大限度地减少脉冲衰减及其影响。这将确保远程雷达系统的卓越性能。
    的头像 发表于 04-30 10:07 3468次阅读
    如何<b class='flag-5'>最大限度</b>地扩大基于氮化镓 (GaN) 功率<b class='flag-5'>放大器</b>的雷达系统的探测距离

    INA351A 具有集成基准放大器的低功耗仪表放大器技术手册

    性能。这使得 INA351A 成为替代分立式 INA 实现方案的理想解决方案,可实现更高的性能和更紧凑的设计,同时最大限度降低对物料清单 (BOM) 成本的影响。
    的头像 发表于 03-24 09:43 1089次阅读
    INA351A 具有集成基准<b class='flag-5'>放大器</b>的低功耗仪表<b class='flag-5'>放大器</b>技术手册

    减少PCB寄生电容的方法

    电子系统中的噪声有多种形式。无论是从外部来源接收到的,还是在PCB布局的不同区域之间传递,噪声都可以通过两种方法无意中接收:寄生电容寄生电感。寄生电感相对容易理解和诊断,无论是从串扰的角度还是从板上不同部分之间看似随机噪声的耦
    的头像 发表于 03-17 11:31 2216次阅读
    减少PCB<b class='flag-5'>寄生电容</b>的方法

    电压跟随器的稳定性分析

    。由于电压跟随器的增益接近1,其电路结构相对简单,通常包含一个运算放大器和若干个电阻,因此通常具有较高的稳定性和可靠性。 二、影响稳定性的因素 运算放大器的特性 : 运算
    的头像 发表于 02-17 18:17 1562次阅读

    HarmonyOS官网上线“稳定性”专栏 助力更稳定流畅的鸿蒙原生应用开发

    鸿蒙开发者官网的最佳实践中上线了稳定性专栏,将DevEco Studio问题定位工具与稳定性实际场景相结合,帮助开发者用好工具的同时,降低稳定性问题定位的难度。 下面以CppCrash
    发表于 02-17 17:17

    Bias-Tee供电与宽带有源器件 (放大器、光电探测器、调制器、直调激光器)

    的直流偏置电压。通过Bias Tee,宽带放大器能够有效地隔离直流和交流信号,从而避免寄生电容对高频信号的不利影响。这种隔离不仅提升了放大器的频率响应,还确保了放大器在处理宽带信号时的
    发表于 01-20 15:24

    OTL电路的稳定性分析

    在音频功率放大器的设计中,OTL(无输出变压器)电路因其结构简单、成本低廉和性能优越而受到广泛应用。然而,OTL电路的稳定性问题一直是设计者需要重点关注的。 OTL电路基本原理 OTL电路的基本结构
    的头像 发表于 01-16 09:33 904次阅读

    电容对电路稳定性的影响

    在现代电子技术中,电容器扮演着至关重要的角色。它们不仅用于滤波、去耦、能量存储和信号耦合,还对电路的稳定性有着显著影响。钽电容作为一高性能的电容
    的头像 发表于 01-10 09:43 1190次阅读

    CAN通信节点多时,如何减少寄生电容和保障节点数量?

    导读在汽车电子与工业控制等领域,CAN通信至关重要。本文围绕CAN通信,阐述节点增多时如何减少寄生电容的策略,同时从发送、接收节点等方面,讲解保障节点数量及通信可靠性的方法。如何减少寄生电容?增加
    的头像 发表于 01-03 11:41 3545次阅读
    CAN通信节点多时,如何减少<b class='flag-5'>寄生电容</b>和保障节点数量?

    运算放大器电路的稳定性分析

    运算放大器电路的稳定性分析是电子工程领域中的一项重要任务,它关系到电路能否在受到扰动后迅速恢复到稳定状态,以及输出信号是否准确、无失真。 一、稳定性的定义与重要性 在控制系统和电路设计
    的头像 发表于 12-18 15:55 2576次阅读