0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人脸识别和AI的关系

lPCU_elecfans 来源:电子发烧友网 作者:电子发烧友网 2020-12-04 09:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着AI 的浪潮发展,AI 的应用场景越来越广泛,其中计算机视觉更是运用到我们生活中的方方面面。

作为一个测试人员,需要紧跟上 AI 的步伐,快速从传统业务测试,转型到 AI 的测试上来。而人脸识别作为机器视觉应用场景里最普及常见的一环,因此这一篇结合AI 的架构和核心,以及人脸识别来讲一讲,AI 怎么测试,以及 AI 测试与传统测试的区别和共同点。

人脸识别和AI的关系

先了解 AI两个基本概念。

a)计算机视觉

也称为机器视觉,是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

最好理解的场景,比如拍一个花的照片,通过机器学习自动告知用户这是什么花。拍一个店铺的照片,机器学习自动分析出店铺的名字,以及店铺的位置。

b)生物识别

通过计算机,与光学、声学、生物传感器、统计学的概念手段结合,利用人体固有的生理特性和行为特征进行个人身份的鉴定。比如通过人的指纹,和数据库录入的指纹比较,判断是否是同一个人。

机器视觉和生物识别都属于AI 的应用领域,机器视觉和生物识别的本质,都在于对于图像图像的识别和比对。人脸识别,则是将机器视觉与生物识别结合,对人类的面部特征应用计算机视觉的一个典型场景。

怎么测试图像识别

结合 AI 的架构和核心来分析。

1.数据收集和处理

既然是视觉,必然是人肉眼所能看到的内容,动态和静态的景、人、建筑、动植物、书本等等,归根结底可以认为是图片。数据收集的过程是,在安装拍照摄像设备之后,从动态的场景与复杂的背景中判断是否存在识别的对象,并分离出对象。采集到照片。因此测试需要从至少这两方面来考虑。


a)采集的素材

图片的像素、大小、清晰度、色彩、复杂度、噪声等,会直接影响到计算机识别的结果。


举个例子来说,下方的三个图,对于肉眼和计算机学习去区分的难度是明显不一样的。识别的难度A一定小于B和C。

图a、图b和图c

b)采集的器材

图片一般是用摄像头拍摄获得的,那么不同品牌和参数的摄像头,拍摄出来的照片像素、清晰度、色彩,甚至是层次都会有差异。

2.数据理解和特征提取

数据理解的目的在于,获取到原始数据之后,分析数据的有效性,并且将数据里有用的, 并且将有典型特征的抽取出来。比如我们拍摄的各种照片,需要从中识别出是包含一朵花的,还是包含一个人的,是一辆自行车还是一辆小汽车。


这个唯一的解决方案是,让机器拿到足够多的样本进行训练,训练的越多,模型将越准确。


测试模型的准确性,也要针对性的找足够多足够全的样本。假设识别的对象是花,那么就尽可能的测试到各地、各类、各种颜色、各种角度的花,真实材质非真实材质等等。假设识别的对象是车,那么就尽可能的测试到各种类别、各种品牌、各种款式的车。

3.模型构建、训练和评估

计算机只会告诉我们比对的两张图片的相似程度,是80%或者是20%,但不会告诉我们这两张图里的内容是否是同一个东西。因此图片比对一定会有一个阈值的概念。设置相似度大于x%的时候,视为比对通过,小于x%的时候,视为比对不通过。


设定阈值的过程就是模型评估。阈值设定过低,则比对通过率高,误报率可能也会升高。阈值设定过高,则比对通过率低,误报率可能也会降低也可能会增高。


测试时,需要不断的尝试不同的阈值,找一个通过率和误报率的平衡点。要针对算法的优劣进行针对性的测试,因为有的算法过于严苛,有的算法不够精准。

人脸识别和图像识别的差异

1.人脸 VS 普通图像

对于人脸来说,最大的问题在于面部特征部位多、可改变性强、面部表情丰富,并且具有动态变化的特性。


因此在数据收集的时候要考虑:
λ不同性别、年龄、人种、民族的人脸,因为五官的特征差异度很大。
λ人脸正对摄像头的,上倾、下倾、左倾和右倾不同角度的
λ环境亮度正常和黑暗的时候,逆光、向光、弱光和强光的情况
λ有佩戴黑框眼镜或墨镜的情况
λ头发正常色和染色的情况
λ人脸和非人脸的表现,尤其是跟人脸最相似的动物,比如猩猩、猿猴。

2.人脸识别应用场景 VS 普通图像识别应用场景

人脸识别主要用于银行、机场、出入境的安防,因此相比一般的机器视觉来讲,安全方面显得更加重要,需要重点测试人脸识别的抗攻击能力。


在上一篇文章里讲过,人脸识别的流程主要存在四个环节:人脸捕获、活体检测、人脸采集、人脸比对。

攻击的行为一般是照片、面具和视频,比如:
λ翻拍后的照片攻击。
λ人脸面具,高仿真面具。
λ长相相似度很高的人脸,软件合成的虚拟人脸等等。

λ GIF 图像和录制拼接的视频等等。

AI 测试和传统测试的异同点

综合来说,AI 测试,需要结合 AI 的架构、算法和应用场景做针对性的测试。除此以外,一般性的功能、性能、兼容和传统业务测试无异。

为了带来更直观深刻的印象,编者准备了一则基于LabVIEW深度学习卷积神经网络的实例视频展示,手把手教大家AI视觉系统安装,缺陷检测。

↓AI视觉快速学习基础应用实际↓

视频看得还不够过瘾吗?别急!

为了帮助学员更深入了解传统视觉,掌握AI人工智能深度学习的机器视觉项目开发,编者将免费提供大家一套基于NI VBAI开发平台的视觉视频教程,你不仅可以通过实操,利用VBAI工具快速地完成常规的视觉检测,还可以利用LV算子,自定义玩转更多复杂的视觉实际应用。

以下为课程大纲:

P1 导学

P2 安装与缺陷检测实例演示

P3 界面的介绍_Trim

P4 获取采集图像方式

P5 读写相机的属性

P6 模拟循环采集图片

P7 选择哪副图像进行检测

P8 视觉助手-图像旋转&矫正&处理

P9 查找表-进行完美视觉定位

P10 图像的滤波器

P11 灰度形态学

P12 练习-图像处理后找Mark点

P13 灰度形态学重构的原理

P14 通过案例解释图像的二值化

P15 基础形态学

P16 透过滚珠实验解释高级形态学用处

P17 图像的二值化反转

P18 图像分类训练实现颜色精确识别

视频课程内容截图

一、传统视觉

二、人工智能-深度学习卷积神经网络

责任编辑:xj

原文标题:AI是怎么测试图像识别的,与人脸识别有何不同?

文章出处:【微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38090

    浏览量

    296542
  • 人脸识别
    +关注

    关注

    77

    文章

    4117

    浏览量

    87755

原文标题:AI是怎么测试图像识别的,与人脸识别有何不同?

文章出处:【微信号:elecfans,微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于开源鸿蒙的RKNN人脸识别应用案例

    本期内容由AI Model SIG提供,介绍了在开源鸿蒙中,基于RK3588的RKNN人脸识别应用开发全流程。
    的头像 发表于 09-03 09:55 3709次阅读
    基于开源鸿蒙的RKNN<b class='flag-5'>人脸</b><b class='flag-5'>识别</b>应用案例

    RK3576助力智慧安防:8路高清采集与AI识别

    框架实现高质量采集与拼接。 • AI视频识别与行为分析:内置AI推理引擎(支持RKNN),可实现人脸识别、车牌
    发表于 08-22 17:41

    如何挑选人脸识别终端?人脸识别一体机品牌排行榜

    挑选人脸识别终端时需要注意稳定性、人脸识别算法可靠性、兼容性、安全性、软件管理、维护与安装以及产品外观与价格等多个因素。另外,在挑选人脸
    的头像 发表于 08-18 10:44 1576次阅读
    如何挑选<b class='flag-5'>人脸</b><b class='flag-5'>识别</b>终端?<b class='flag-5'>人脸</b><b class='flag-5'>识别</b>一体机品牌排行榜

    人脸方向识别算法

    人脸识别
    深蕾半导体
    发布于 :2025年07月22日 09:58:29

    基于LockAI视觉识别模块:C++人脸识别

    本文基于RV1106做成的LockAI视觉识别模块,采用 LZ-Picodet 模型训练的人脸检测模型 LZ-Face,以及ArcFace人脸识别模型,实现
    发表于 07-01 12:01

    基于LockAI视觉识别模块:C++人脸识别

    本文基于RV1106做成的LockAI视觉识别模块,采用LZ-Picodet模型训练的人脸检测模型LZ-Face,以及ArcFace人脸识别模型,实现
    的头像 发表于 07-01 10:09 508次阅读
    基于LockAI视觉<b class='flag-5'>识别</b>模块:C++<b class='flag-5'>人脸</b><b class='flag-5'>识别</b>

    【BPI-CanMV-K230D-Zero开发板体验】人脸检测、手势识别、车牌识别

    【BPI-CanMV-K230D-Zero开发板体验】人脸检测、手势识别、车牌识别 本文介绍了香蕉派 CanMV K230D Zero 开发板结合 MIPI 摄像头实现人脸检测、
    发表于 06-30 20:44

    有些人脸识别身份核验终端为什么晚上用不了?

    无论是身份证人脸识别身份核验终端、刷脸核验一体机还是人脸识别门禁考勤一体机,它都涉及到人脸识别
    的头像 发表于 05-10 09:42 993次阅读
    有些<b class='flag-5'>人脸</b><b class='flag-5'>识别</b>身份核验终端为什么晚上用不了?

    【智能通行新标杆!人脸识别终端方案】

    人脸识别
    Linux/安卓主板
    发布于 :2025年04月22日 09:54:52

    《DNESP32S3使用指南-IDF版_V1.6》第五十九章 人脸识别实验

    识别的一系列相关技术。本章,我们使用乐鑫AI库来实现人脸识别功能。本章分为如下几个部分:59.1 硬件设计59.2 软件设计59.3 下载验证 59.1 硬件设计1.例程功能本章实验
    发表于 03-26 09:40

    安信可AI人脸识别方案

    作为神仙世界的高科技,"无接触式开锁",人脸识别技术也被广泛应用在现代生活中,安信可也有AI人脸识别方案!
    的头像 发表于 02-25 14:39 733次阅读
    安信可<b class='flag-5'>AI</b><b class='flag-5'>人脸</b><b class='flag-5'>识别</b>方案

    人脸识别技术的优势与劣势

    人脸识别技术的优势 1. 高度准确性 人脸识别技术在理想条件下可以达到非常高的准确性。随着深度学习技术的发展,现代人脸
    的头像 发表于 02-06 18:23 3047次阅读

    人脸识别技术的应用场景

    在数字化时代,安全和便捷性成为了人们日益关注的话题。人脸识别技术以其独特的优势,即无需物理接触、快速识别和高准确率,成为了解决这些问题的关键技术之一。 1. 安全监控 1.1 公共安全 在公共安全
    的头像 发表于 02-06 17:20 3681次阅读