0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NVIDIA A100 GPU推理性能237倍碾压CPU

工程师邓生 来源:雷锋网 作者:包永刚 2020-10-23 17:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

MLPerf组织今天发布最新的推理基准测试(Benchmark)MLPerf Inference v0.7结果,总共有23个组织提交了结果,相比上一个版本(MLPerf Inference v0.5)的12个提交者增加了近一倍。

结果显示,今年5月NVIDIA(Nvidia)发布的安培(Ampere)架构A100 Tensor Core GPU,在云端推理的基准测试性能是最先进Intel CPU的237倍。

MLPerf Inference V0.7部分结果截图

最新的AI推理测试结果意味着,NVIDIA未来可能在AI推理和训练市场都占据领导地位,给云端AI推理市场拥有优势的Intel带来更大压力的同时,也将让其他追赶者面临更大挑战。

MLPerf推理基准测试进一步完善的价值

与2019年的MLPerf Inference v0.5版本相比,最新的0.7版本将测试从AI研究的核心视觉和语言的5项测试,扩展了到了包括推荐系统、自然语言理解、语音识别和医疗影像应用的6项测试,并且有分别针对云端和终端推理的测试,还加入了手机和笔记本电脑的结果。

扩展的测试项从MLPerf和业界两个角度都有积极意义。

MLPerf Inference v0.5测试项

MLPerf Inference v0.7数据中心测试项

MLPerf Inference v0.7边缘端测试项

任何一个基准测试都需要给业界具有参考价值的指标。MLPerf基准测试是在业界缺乏对AI芯片公认的评价标准的2018年诞生,因此,MLPerf组织既需要给出各方都认可的成绩,还需要根据AI行业的发展完善评价标准。

不过,AI行业发展迅速,AI模型的参数越来越多,应用的场景也越来越广泛。评价AI芯片和系统的推理性能需要涵盖可编程性、延迟、准确性、模型大小、吞吐量、能效等指标,也需要选择更具指导价值的模型和应用。

此次增加的推荐系统测试对于互联网公司意义重大。在王喆的《深度学习推荐系统》一书中提到,2019年天猫“双11”的成交额是2684亿元,假设推荐系统进行了优化,整体的转化率提高1%,那么增加的成交额大约为26.84亿元。

另外,MLPerf Inference v0.7中增加医疗影像3D U-Net模型测试与新冠大流行以及AI在医疗行业的重要性与日俱增密切相关,比如一家初创公司使用AI简化了超声心电图的采集工作,在新冠大流行初期发挥了作用。

基准测试从v0.5到v0.7,能够为要选用AI芯片和系统的公司提供更直观和有价值的参考是MLPerf基准测试的价值所在,比如,帮助金融结构的会话式AI更快速回答客户问题,帮助零售商使用AI保证货架库存充足。

与此同时,这也将促进MLPerf组织在业界的受认可程度,从接近翻倍的提交成绩的组织就能看出来。

GPU云端推理性能最高是CPU的237倍

过去几年,云端AI训练市场NVIDIA拥有绝对优势,云端AI推理市场被Intel赚取了大部分利润是事实。这让不少人都产生了GPU更适合训练而CPU更适合推理的认知,但MLPerf最新的推理测试结果可能会改变这一观点。

MLPerf Inference V0.7的测试结果显示,在数据中心OFFLINE(离线)测试模式下,赛灵思U250和IntelCooper Lake在各个测试模型下与NVIDIAT4的差距不大,但A100对比CPU、FPGA和自家的T4就有明显的性能差距。

在SERVER模式下的推荐系统DLRM模型下,A100 GPU对比IntelCooper Lake有最高237倍的性能差距,在其他模型下也有比较显著的差距。值得注意的是,Intel的Cooper Lake系统的状态还是预览,其余三款芯片的系统都已经可用。

A100 GPU的优势也在边缘推理中也十分明显。在单数据流(Singel-Stream)测试中,A100对比NVIDIAT4和面向边缘终端的NVIDIAJetson AGX Xavier有几倍到十几倍的性能优势。在多数据流(Multi-Stream)测试中,A100对比另外两款自家产品在不同AI模型中有几倍到二十多倍的性能优势。

在边缘OFFLINE模式下,A100对比T4和Jetson AGX Xavier也有几倍到二十多倍的性能优势。

这很好地说明A100的安培架构以及其第三代Tensor Core优势的同时,也表明了NVIDIA能够覆盖整个AI推理市场。

在此次提交结果的23家公司中,除了NVIDIA外还有11家其合作伙伴提交了基于NVIDIA GPU的1029个测试结果,占数据中心和边缘类别中参评测试结果总数的85%以上。

从提交结果的合作伙伴的系统中可以看到,NVIDIAT4仍然是企业的边缘服务器推理平台的主要选择。A100提升到新高度的性能意味着未来企业边缘服务器在选择AI推理平台的时候,可以从T4升级到A100,对于功耗受限的设备,可以选择Jeston系列产品。

特别值得注意的是,NVIDIA GPU首次在公有云中实现了超越CPU的AI推理能力。

临界点到来?AI推理芯片市场竞争门槛更高

五年前,只有少数领先的高科技公司使用GPU进行推理。如今,NVIDIAGPU首次在公有云市场实现超越CPU的AI推理能力,或许意味着AI推理市场临界点的到来。NVIDIA还预测,基于其GPU的总体云端AI推理计算能力每两年增长约10倍,增长速度高于CPU。

另外,NVIDIA还强调基于A100高性能系统的成本效益。NVIDIA表示,一套DGX A100系统可以提供相当于近1000台双插槽CPU服务器的性能,能为客户AI推荐系统模型从研发走向生产的过程,具有极高的成本效益。

同时,NVIDIA也在不断优化推理软件堆栈,进一步提升在推理市场的竞争力。

最先感受到影响的会是Intel,但在云端AI推理市场体现出显著变化至少需要几年时间,因为企业在更换平台的时候会更加谨慎,生态的护城河此时也更能体现出价值。

但无论如何,我们都看到NVIDIA在AI市场的强势地位。雷锋网七月底报道,在MLPerf发布的MLPerf Training v0.7基准测试中,A100 Tensor Core GPU,和HDR InfiniBand实现多个DGX A100 系统互联的庞大集群DGX SuperPOD系统在性能上开创了八个全新里程碑,共打破16项纪录。

安培架构A100在MLPerf最新的训练和推理成绩表明NVIDIA不仅给云端AI训练的竞争者更大的压力,也可能改变AI推理市场的格局。

NVIDIA将其在云端训练市场的优势进一步拓展到云端和边缘推理市场符合AI未来的发展趋势。有预测指出,随着AI模型的成熟,市场对云端AI训练需求的增速将会降低,云端AI推理的市场规模将会迅速增加,并有望在2022年超过训练市场。

另据市场咨询公司ABI Research的数据,预计到2025年,边缘AI芯片市场收入将达到122亿美元,云端AI芯片市场收入将达到119亿美元,边缘AI芯片市场将超过云端AI芯片市场。

凭借强大的软硬件生态系统,NVIDIA和Intel依旧会是AI市场的重要玩家,只是随着他们竞争力的不断提升,其他参与AI市场竞争的AI芯片公司们面临的压力也随之增加。
责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5496

    浏览量

    109097
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5099

    浏览量

    134464
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    新手小白必看!关于A100云主机租用,你想知道的一切都在这!

    “我想租一台A100云主机来跑我的模型,但完全不知道从何下手。”——这是我们听到最多的来自AI新手的声音。A100,这个听起来就“高大上”的名词,背后其实是一套清晰、可操作的流程。今天,我们就用
    的头像 发表于 10-31 19:24 1061次阅读
    新手小白必看!关于<b class='flag-5'>A100</b>云主机租用,你想知道的一切都在这!

    通过NVIDIA Jetson AGX Thor实现7生成式AI性能

    Jetson Thor 平台还支持多种主流量化格式,包括 NVIDIA Blackwell GPU 架构的新 NVFP4 格式,有助于进一步优化推理性能。该平台同时支持推测解码等新技术,为在边缘端加速生成式 AI 工作负载提供了
    的头像 发表于 10-29 16:53 1047次阅读

    NVIDIA TensorRT LLM 1.0推理框架正式上线

    TensorRT LLM 作为 NVIDIA 为大规模 LLM 推理打造的推理框架,核心目标是突破 NVIDIA 平台上的推理性能瓶颈。为实
    的头像 发表于 10-21 11:04 757次阅读

    利用NVIDIA DOCA GPUNetIO技术提升MoE模型推理性能

    在第三届 NVIDIA DPU 中国黑客松竞赛中,我们见证了开发者与 NVIDIA 网络技术的深度碰撞。在 23 支参赛队伍中,有 5 支队伍脱颖而出,展现了在 AI 网络、存储和安全等领域的创新突破。
    的头像 发表于 09-23 15:25 687次阅读

    使用NVIDIA NVLink Fusion技术提升AI推理性能

    本文详细阐述了 NVIDIA NVLink Fusion 如何借助高效可扩展的 NVIDIA NVLink scale-up 架构技术,满足日益复杂的 AI 模型不断增长的需求。
    的头像 发表于 09-23 14:45 584次阅读
    使用<b class='flag-5'>NVIDIA</b> NVLink Fusion技术提升AI<b class='flag-5'>推理性能</b>

    DeepSeek R1 MTP在TensorRT-LLM中的实现与优化

    TensorRT-LLM 在 NVIDIA Blackwell GPU 上创下了 DeepSeek-R1 推理性能的世界纪录,Multi-Token Prediction (MTP) 实现了大幅提速
    的头像 发表于 08-30 15:47 3969次阅读
    DeepSeek R1 MTP在TensorRT-LLM中的实现与优化

    NVIDIA桌面GPU系列扩展新产品

    NVIDIA 桌面 GPU 系列扩展,推出 NVIDIA RTX PRO 4000 SFF Edition GPU 和 RTX PRO 2000 Blackwell
    的头像 发表于 08-18 11:50 998次阅读

    NVIDIA从云到边缘加速OpenAI gpt-oss模型部署,实现150万TPS推理

    的发布持续深化了双方的 AI 创新合作。NVIDIANVIDIA Blackwell 架构上优化了这两款全新的开放权重模型并实现了推理性能加速,在 NVIDIA 系统上至高达到每
    的头像 发表于 08-15 20:34 1964次阅读
    <b class='flag-5'>NVIDIA</b>从云到边缘加速OpenAI gpt-oss模型部署,实现150万TPS<b class='flag-5'>推理</b>

    如何在Ollama中使用OpenVINO后端

    /GPU/NPU)为模型推理提供了高效的加速能力。这种组合不仅简化了模型的部署和调用流程,还显著提升了推理性能,特别适合需要高性能和易用性的场景。
    的头像 发表于 04-14 10:22 1127次阅读

    英伟达GTC25亮点:NVIDIA Dynamo开源库加速并扩展AI推理模型

    NVIDIA Dynamo 提高了推理性能,同时降低了扩展测试时计算 (Scaling Test-Time Compute) 的成本;在 NVIDIA Blackwell 上的推理优化
    的头像 发表于 03-20 15:03 1077次阅读

    无法调用GPU插件推理的远程张量API怎么解决?

    运行了使用 GPU 插件的远程张量 API 的推理。但是,它未能共享 OpenCL* 内存,但结果不正确。
    发表于 03-06 06:13

    英特尔至强6助力HPE Gen12,AI推理性能提升3

    在这个AI人工智能、HPC高性能计算飞速发展的时代,人们对于算力的渴望是空前的,无论是CPU处理器、GPU/NPU加速器,尤其是生成式AI的火爆,GPU/NPU被抬上了空前的超高地位。
    的头像 发表于 02-18 14:18 538次阅读
    英特尔至强6助力HPE Gen12,AI<b class='flag-5'>推理性能</b>提升3<b class='flag-5'>倍</b>!

    英伟达A100和H100比较

    英伟达A100和H100都是针对高性能计算和人工智能任务设计的GPU,但在性能和特性上存在显著差异。以下是对这两款
    的头像 发表于 02-10 17:05 1.1w次阅读
    英伟达<b class='flag-5'>A100</b>和H<b class='flag-5'>100</b>比较

    使用NVIDIA推理平台提高AI推理性能

    NVIDIA推理平台提高了 AI 推理性能,为零售、电信等行业节省了数百万美元。
    的头像 发表于 02-08 09:59 1319次阅读
    使用<b class='flag-5'>NVIDIA</b><b class='flag-5'>推理</b>平台提高AI<b class='flag-5'>推理性能</b>

    解锁NVIDIA TensorRT-LLM的卓越性能

    Batching、Paged KV Caching、量化技术 (FP8、INT4 AWQ、INT8 SmoothQuant 等) 以及更多功能,确保您的 NVIDIA GPU 能发挥出卓越的推理性能
    的头像 发表于 12-17 17:47 1611次阅读