0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

BUCK变换器多层PCB热设计技巧

工程师 来源:松哥电源 作者:松哥电源 2020-10-15 15:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

实际的应用中,很多降压型BUCK变换器,通常要利用连接到相应管脚的大片PCB铜皮来散热:单芯片的BUCK电源IC,主要利用IC的GND管脚,焊接到PCB的GND铜皮来散热;部分内部封装分立MOSFET的BUCK电源IC,以及采用分立方案的BUCK变换器,如使用控制器驱动分立MOSFET、Power Stage、Power Block或 DrMOS,都会利用开关节点SW对应的管脚,焊接到PCB的铜皮来散热。本文主要讨论使用SW铺设PCB铜皮时,如何优化PCB的设计,来优化PCB的散热性能。

前面研究过:器件散热管脚对应的PCB板铜皮铺的面积越大,总热阻就越低,器件的温升就越低,由于PCB板上其他元件及PCB本身尺寸的限制,散热铜皮铺设的面积也就受到限制。那么,对于多层PCB板,如何在各层铺设铜皮,比较优化?

下面以一个使用开关节点SW管脚来散热的BUCK电源IC来研究这个问题,输入电压:12V,输出电压:5V,输出电流:4A,工作频率:500KHz,4层PCB板,1OZ覆铜。

PCB的设计1:开关节点SW管脚下面,4层PCB板每层都铺设相应的SW铜皮,然后用多个过孔连接4层PCB的SW铜皮,特别是IC底部SW管脚下面,布设多个过孔。

图1:PCB的设计1

PCB的设计2:开关节点SW管脚下面,4层PCB板每层都铺设相应的SW铜皮,然后用多个过孔连接4层PCB的SW铜皮,但是,IC底部SW管脚下面没有布设过孔。

图2:PCB的设计2

PCB的设计3:开关节点SW管脚下面,只有PCB的顶层铺设SW铜皮,其他层对应的位置,镂空。

图3:PCB的设计3

PCB的设计4:开关节点SW管脚下面,只有PCB板的顶层铺设SW铜皮,其他层对应的位置都为GND铜皮平面。

图4:PCB的设计4

测量4种条件下IC的温度,结果如图5、图6、图7、图8所示。

图5:PCB设计1的IC温度

图6:PCB设计2的IC温度

图7:PCB设计3的IC温度

图8:PCB设计4的IC温度

由实验的结果,可以得到以下结论:

(1)电源IC芯片用来散热的管脚,使用大的散热铜皮和多层铜皮,直接在散热管脚下面布设过孔连接这些多层铜皮,可以极大提高散热性能。但是,多层铺设SW铜皮,如果SW管脚下面不直接布设过孔,会极大影响散热性能。

(2)多层PCB板,即使仅有顶层铺设SW铜皮,只要第2层铺设GND铜皮平面,可以达到多层铺设SW铜皮同样的散热效果。由于顶层和第2层的距离比较近,热量可以有效的通过传导和辐射的方式,到达第2层GDN平面,然后散出去;而且,这种设计对系统的干扰最小。

(3)只有顶层孤岛的铜皮、下方镂空的设计,散热效果最差。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    185

    文章

    18709

    浏览量

    261392
  • pcb
    pcb
    +关注

    关注

    4391

    文章

    23742

    浏览量

    420756
  • IC
    IC
    +关注

    关注

    36

    文章

    6258

    浏览量

    184241
  • 变换器
    +关注

    关注

    17

    文章

    2158

    浏览量

    112077
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Buck变换器的控制回路设计

    在研发过程中为提高电源效率及可靠性.在超宽范围输入电压的直流稳压源的设计中.采用高频高效的单级Buck变换器及有效的控制方式满足全输入电压及全负载范围内电源的稳定。
    的头像 发表于 10-28 11:20 4419次阅读
    <b class='flag-5'>Buck</b><b class='flag-5'>变换器</b>的控制回路设计

    浮思特 | 揭秘升压变换器工作原理与应用全解析

    在现代电子设备中,电源管理是一个非常重要的环节,而升压变换器(BoostConverter)则是实现电压提升的重要电路之一。本文将详细介绍升压变换器的工作原理及其应用。什么是升压变换器?升压
    的头像 发表于 09-09 17:44 895次阅读
    浮思特 | 揭秘升压<b class='flag-5'>变换器</b>工作原理与应用全解析

    【「开关电源控制环路设计:Christophe Basso 的实战秘籍」阅读体验】+第五章 降压变换器

    本章作者讲解了降压变换器 一、电压模式降压变换器 1、功率级和补偿 VM控制下的连续导通模式(CCM)BUCK变换器的控制到输出传递函数: 2、环路增益补偿 3、瞬时响应
    发表于 08-19 21:38

    【「开关电源控制环路设计:Christophe Basso 的实战秘籍」阅读体验】+ 问题四:电流模式控制下的降压变换器是什么?

    【「开关电源控制环路设计:Christophe Basso 的实战秘籍」阅读体验】+ 问题四:电流模式控制下的降压变换器是什么? 电流模式降压变压 Buck变换器现在运行在CM控
    发表于 08-07 11:17

    【「开关电源控制环路设计:Christophe Basso 的实战秘籍」阅读体验】+ 问题三:电压模式控制下的降压变换器是什么?

    问题三:电压模式控制下的降压变换器是什么? 答案: 在第73页,电压模式降压变换器, 第一个例子以一个100KHz的降压(Buck)变换器的SIMPLIS应用电路为起点,该
    发表于 08-06 10:35

    BUCK变换器在高速双凸极电动机调速系统的研究

    相逆变器前级加入Buck变换器,通过转速、电感电流构成新型双闭环调速系统。理论分析和实验结果均表明,新型调速系统通过控制母线输入电压,消除了双凸极电机在非换相区内的电流纹波,有效地抑制了换相区的转矩
    发表于 07-22 17:15

    绕线转子同步电机用ZCSBuck励磁变换器

    摘要:提出了一种适用于电励磁同步电机的零电流(ZCS)软开关Buck励磁变换器。为了减小励磁变换器的体积,利用转子绕组的等效电感作为Buck输出滤波电感。在此基础上,为了消除转子绕组寄
    发表于 06-12 13:49

    开关电源功率变换器拓扑与设计

    详细讲解开关电源功率变换器的各种拓扑电路,通过实例详细讲解。 共分为12章,包括功率变换器的主要拓扑介绍和工程设计指南两大部分内容。其中,拓扑部分主要包括正激、反激、对称驱动桥式、隔离Boost
    发表于 05-19 16:26

    DC/DC变换器中MOS管并联时被击穿? #电子 #半导体 #MOSFET #并联 #变换器 #击穿

    变换器
    微碧半导体VBsemi
    发布于 :2025年05月07日 16:06:37

    PL3122高效率同步升压 DC-DC 变换器

    变换器
    深圳市百盛新纪元半导体有限公司
    发布于 :2025年04月28日 17:46:40

    一种分段气隙的CLLC变换器平面变压设计

    一种路径,采用磁集成方法,对1MHz双向CLLC变换器的变压进行研究、设计与测试,通过优化PCB绕线方法、进行仿真优化,提出了一种分段气隙的变压结构,通过Maxwell瞬态场、涡流
    发表于 03-27 13:57

    无桥PFC变换器综述

      E (1)为了获得直流量 ε,需要另一个 DC/DC 变换器从输出电压得到,其实现框图如图 1(b)所示。根据图 1的思想和基本的 DC/DC 变换器拓扑,如 Buck、Boost
    发表于 03-13 13:50

    做开关变换器的仿真时,如何将buck和boost级联起来?

    做开关变换器的仿真时,如何将buck和boost级联起来?
    发表于 02-14 08:24

    交直流变换器和整流区别

    在电力电子领域中,交直流变换器(AC/DC Converter)与整流(Rectifier)都是实现电能转换的关键设备,但它们的工作原理、功能特性和应用场景存在显著差异。本文旨在深入探讨交直流变换器与整流
    的头像 发表于 01-30 14:46 1400次阅读

    TCM控制双向Buck/Boost变换器中高精度可变开关频率ZVS调节的实用电流推导方法

    电子发烧友网站提供《TCM控制双向Buck/Boost变换器中高精度可变开关频率ZVS调节的实用电流推导方法.pdf》资料免费下载
    发表于 12-09 15:05 29次下载