0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

针对MOS管寄生参数振荡损坏电路仿真模拟方案

电子设计 来源:创维集团TV产品研究院 作者:胡向峰 2021-02-07 13:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

PFC电路MOS管在应用过程中产生振荡的机理,通过具体的案例分析了因MOS振荡引起损坏的各种原因。

o4YBAGAU70yACum2AACLssUhins280.png

图1 PFC电路原理

1 PFC电路工作原理

PFC(功率因数校正)主要是对输入电流波形进行控制,使其同步输入电压波形。功率因数是指有功功率与视在功率的比值。功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。 开关电源 是1种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,因此需要PFC电路提高功率因数。目前的PFC有2种,被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。通常采用主动式PFC电路提高开关电源功率因数,如图1所示。

在上述电路中,PFC电感L1在MOS管Q1导通时储存能量,在开关管Q1截止时,电感L1上感应出右正左负的电压,将导通时储存的能量通过升压二极管D2对大滤波电容C3充电,输出能量,只不过其输入的电压是没有经过滤波的脉动电压。特别地,PFC电感L1上都并联着1个二极管D1,该二极管D1一方面降低对PFC电感和升压二极管的浪涌冲击,另一方面保护PFC开关管。通过此电路,从而实现输入电压和电流波形的同相位,大大提高对电能的利用效率。

o4YBAGAU71iAX-2sAAIchbqYREg847.png

图2 PFC MOS驱动波形

2 MOS管振荡原理分析

一般地,为了改善PFC电路引起的电源EMI(电磁干扰),通常在PFC MOS管的D、S间并联1个高压电容,容值一般为(47~220)pF,在PFC升压二极管D2上并联1个高压电容,一般取值为(47~100) pF。对普通的MOS管应用而言,在开关机及正常使用过程中,不会出现异常。但是当MOS管寄生参数发生变化时,且在快速开关机过程中,就会出现明显的驱动波形振荡(如图2),严重时引起MOS管的损坏。

通过对PFC MOS管进行测试和深入分析发现,MOS管的寄生参数对振荡起着关键作用。通过电路实验模拟和仿真,证实了这一现象产生的根本原因。图3为PFC MOS管的等效电路图。

o4YBAGAU72eALxGNAAB3oaPmPkM660.png

图3 为PFC MOS管的等效电路图

MOS管除了3个极之间的Cgd、Cds和Cgs寄生电容外,在G极、D极和S极分别串有寄生电感Lg、Ld和Ls,这些寄生电感主要由MOS管的引脚材质和引脚长度决定,它们是真实存在的。当为了改善电路的EMI时,通常在MOS管D、S间并联高压电容,在此为了模拟实验,采用Cds(ext) 470 pF来说明,MOS管导通电阻为Rdson。在开机过程中,参与的回路说明如下:

1)PFC二极管D2的反向恢复电流通路为:D2经Ld和Rdson,再到Ls。

2)在米勒平台期间,Cds、Cds(ext)及Cgd放电,放电能量储存在Ld、Ls和Lg中,放电回路分别为:

①Cds通过Rdson放电,Ld、Ls和Lg不参与谐振;

②Cds(ext) 放电回路分别为:

Cds(ext)→Ld→Rdson→Ls→Cds(ext),和

Cds(ext)→Ld→Cgd→Cgs→Ls→Cds(ext),及

Cds(ext)→Ld→Cgd→Lg→PFC IC→Cds(ext)

从上述回路可以看出,放电能量分别储存在Ld、Ls和Lg中。

③ Cgd放电回路为:

Cgd→Rdson→Cgs→Cgd,和

Cgd→Rdson→Ls→PFC IC→Lg→Cgd

从上述回路可以看出,放电能量分别储存在Ls和Lg中。

由于上述寄生电容和寄生电感及外接电容Cds(ext)的通路存在,在PFC MOS管反复开关机过程中,引起驱动波形的振荡,严重时,引起开关MOS的损坏。

通过仿真电路,也可模拟出类似的波形,其仿真结果如图4。

o4YBAGAU73OAaXgAAAEOdoBZOQE464.png

图4(a) PFC MOS仿真参数图

pIYBAGAU73-AdwQcAACNz20vEsY263.png

图4(b) PFC MOS仿真波形

3 MOS管振荡问题解决措施及效果确认

针对PFC MOS在使用过程中振荡引起的损坏问题,结合上述MOS管振荡机理的分析,在实际使用中,采取的对策如下。

1)在PFC升压二极管上尽量不增加电容,防止因该电容引起二极管反向恢复时间加大,从而引起MOS管振荡加剧,造成损坏。

2)在PFC MOS管的漏极(D极)串联磁珠,由于磁珠表现为高频阻抗特性,用于抑制快速开关机时MOS引起的串联谐振。

3)为了解决因PFC MOS引起的EMC问题,通常在PFC MOS管的漏-源极(D-S极)间并联(47~220) pF的高压电容,为了避免与MOS内部的寄生电感引起振荡,尽量不增加此电容。若因EMC必需增加时,需与MOS管漏极磁珠同时使用。

具体原理图如图5所示。

o4YBAGAU75GAU7YSAACQeI5UqEw165.png

图5 改善后的PFC原理图

从图6实际测试波形可以看出,采用上述措施后,在快速开关机时,MOS管栅极波形消除了瞬态尖峰,从而保证MOS管快速开关机时的应力要求,避免因振荡造成的损坏问题。

pIYBAGAU76WAebHPAAGjVh9Fq-8694.png

图6(a) 改善前PFC驱动波形(绿色)

o4YBAGAU77CAMpuwAAHin1lkWGo973.png

图6(b) 改善后PFC驱动波形(绿色)

4 结语

本文针对MOS管寄生参数引起振荡造成损坏问题,进行了理论分析和电路仿真模拟,得出了MOS管除了寄生电容外,还存在由于MOS引脚材质和长短引起的寄生电感,并通过实际的案例进行了验证,证实了寄生电感的存在。通过增加切实有效的对策,避免了因寄生电容和寄生电感振荡引起的PFC MOS损坏,具有极大的设计参考意义。

参考文献:

[1] 钟炎平。电力电子电路设计[M]。武汉:华中科技大学出版社,2010.

[2] 康华光。电子技术基础[M]。北京:高等教育出版社,2009.

[3] 张占松,蔡宣三。开关电源的原理与设计。北京:电子工业出版社,2004.
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 振荡器
    +关注

    关注

    28

    文章

    4155

    浏览量

    142323
  • MOS管
    +关注

    关注

    110

    文章

    2752

    浏览量

    74925
  • PFC
    PFC
    +关注

    关注

    49

    文章

    1047

    浏览量

    110430
  • 寄生电容
    +关注

    关注

    1

    文章

    301

    浏览量

    20199
  • 电路仿真
    +关注

    关注

    37

    文章

    213

    浏览量

    96699
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    四种MOS驱动电路方案介绍

    这个电控界的MOS,但想让它听话,还得靠驱动电路!整理了 4 种常用方案
    的头像 发表于 10-17 09:33 3568次阅读
    四种<b class='flag-5'>MOS</b><b class='flag-5'>管</b>驱动<b class='flag-5'>电路</b><b class='flag-5'>方案</b>介绍

    KiCad电路仿真简易教程

    “  KiCad作为一款功能强大的开源EDA软件,不仅能进行原理图设计和PCB布局,还集成了强大的电路仿真功能。通过其内置的  ngspice  仿真引擎,工程师可以在设计早期验证电路的功能和性能
    的头像 发表于 09-09 11:19 1.1w次阅读
    KiCad<b class='flag-5'>电路仿真</b>简易教程

    Multisim模拟电路仿真教程资料

    电子发烧友网站提供《Multisim模拟电路仿真教程资料.doc》资料免费下载
    发表于 09-03 16:23 1次下载

    常用的mos驱动方式

    本文主要探讨了MOS驱动电路的几种常见方案,包括电源IC直接驱动、推挽电路协同加速、隔离型驱动等。电源IC直接驱动的简约哲学适合小容量
    的头像 发表于 06-19 09:22 870次阅读
    常用的<b class='flag-5'>mos</b><b class='flag-5'>管</b>驱动方式

    九进制计数电路仿真设计

    九进制计数电路仿真
    发表于 06-09 14:48 0次下载

    Multisim模拟电路仿真教程

    本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。   在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受
    发表于 05-09 17:58 4次下载

    概伦电子电路类型驱动SPICE仿真器NanoSpice X介绍

    倍,能够应对精确的模块级电路仿真、复杂的模拟全芯片设计仿真,以及在电源地网络中海量寄生电阻电容的超大规模后仿电路仿真验证。
    的头像 发表于 04-23 15:30 987次阅读
    概伦电子<b class='flag-5'>电路</b>类型驱动SPICE<b class='flag-5'>仿真</b>器NanoSpice X介绍

    概伦电子千兆级高精度电路仿真器NanoSpice Giga介绍

    NanoSpiceGiga是概伦电子自主研发的千兆级晶体级SPICE电路仿真器,通过基于大数据的并行仿真引擎处理十亿以上单元的电路仿真,可以用于各类存储器
    的头像 发表于 04-23 15:21 878次阅读
    概伦电子千兆级高精度<b class='flag-5'>电路仿真</b>器NanoSpice Giga介绍

    飞虹MOSFHP1404V的参数性能

    针对12V输入电路的产品电路设计,需要有更高的电压安全系数。这一款2025年新推出到市场的国产MOS以BVDSS_typ=55V的
    的头像 发表于 03-01 11:30 2698次阅读
    飞虹<b class='flag-5'>MOS</b><b class='flag-5'>管</b>FHP1404V的<b class='flag-5'>参数</b>性能

    MOS的并联使用:如何保证电流均流?

    在功率电子电路中,为了满足大电流需求,常常需要将多个MOS并联使用。然而,由于MOS参数的离
    的头像 发表于 02-13 14:06 3856次阅读
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>的并联使用:如何保证电流均流?

    MOS驱动电路有几种,看这个就够了!

    ,应该注意几个参数以及这些参数的影响。①查看电源IC手册的最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。②了解MOS寄生
    的头像 发表于 02-11 10:39 1656次阅读
    <b class='flag-5'>MOS</b><b class='flag-5'>管</b>驱动<b class='flag-5'>电路</b>有几种,看这个就够了!

    SPICE混合电路仿真介绍

    电子发烧友网站提供《SPICE混合电路仿真介绍.pdf》资料免费下载
    发表于 01-22 17:14 2次下载
    SPICE混合<b class='flag-5'>电路仿真</b>介绍

    数模混合电路仿真实现

    电子发烧友网站提供《数模混合电路仿真实现.pdf》资料免费下载
    发表于 01-21 15:32 1次下载
    数模混合<b class='flag-5'>电路仿真</b>实现

    模拟电路仿真实现

    电子发烧友网站提供《模拟电路仿真实现.pdf》资料免费下载
    发表于 01-21 15:21 5次下载
    <b class='flag-5'>模拟</b><b class='flag-5'>电路仿真</b>实现

    数字电路仿真实现

    电子发烧友网站提供《数字电路仿真实现.pdf》资料免费下载
    发表于 01-21 09:24 2次下载
    数字<b class='flag-5'>电路仿真</b>实现