0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

经典PID控制器的积分分离优化算法

454398 来源:博客园 作者:木南创智 2020-11-04 14:24 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

我们已经讲述了PID控制器的实现,包括位置型PID控制器和增量型PID控制器。但这个实现只是最基本的实现,并没有考虑任何的干扰情况。在本节及后续的一些章节,我们就来讨论一下经典PID控制器的优化与改进。这一节我们首先来讨论针对积分项的积分分离优化算法

1、基本思想

我们已经讲述了PID控制引入积分主要是为了消除静差,提高控制精度。但在过程的启动、结束或大幅度增减设定值时,短时间内系统输出有很大偏差,会造成PID运算的积分累积,引起超调或者振荡。为了解决这一干扰,人们引入了积分分离的思想。其思路是偏差值较大时,取消积分作用,以免于超调量增大;而偏差值较小时,引入积分作用,以便消除静差,提高控制精度。

具体的实现步骤是:根据实际情况,设定一个阈值;当偏差大于阈值时,消除积分仅用PD控制;当偏差小于等于阈值时,引入积分采用PID控制。则控制算法可表示为:

其中β称为积分开关系数,其取值范围为:

由上述表述及公式我们可以知道,积分分离算法的效果其实与ε值的选取有莫大关系,所以ε值的选取实际上是实现的难点,ε值过大则达不到积分分离的效果,而ε值过小则难以进入积分区,ε值的选取存在很大的主观因素。

对于经典的增量式PID算法,似乎没有办法由以上的公式推导而来,因为β随着err(k)的变化在不是修改着控制器的表达式。其实我们可以换一种角度考虑,每次系统调节未定后,偏差应该为零,然后只有当设定值改变时,系统才会响应而开始调节。设定值的改变实际上是一个阶跃变化,此时的控制输出记为U0,开始调节时,其调节增量其实与之前的一切没有关系。所以我们就可以以变化时刻开始为起点,而得到带积分分离的增量算法,以保证在启动、停止和快速变化时防止超调。公式如下:

其中β的取值与位置型PID算法一致。可能有人会担心偏差来回变化,造成积分作用的频繁分离和引入,进而使上述的增量表达式无法实现。其实我们分析一下就能发现,在开始时,由于设定值变化引起的偏差大而分离了积分作用,在接近设定值时,偏差变小就引入了积分,一边消除静差,而后处于稳态,直到下一次变化。

2、算法实现

这一部分,我们根据前面对其基本思想的描述,来实现基于积分分离的PID算法实现,同样是包括位置型和增量型两种实现方式。首先我们来看一下算法的实现过程,具体的流程图如下:

有上图我们知道,与普通的PID算法的区别,只是判断偏差的大小,偏差大时,为PD算法,偏差小时为PID算法。于是我们需要一个偏差检测与积分项分离系数β的函数。

 1 static uint16_t BetaGeneration(float error,float epsilon)
 2 
 3 {
 4 
 5   uint16_t beta=0;
 6 
 7   if(abs(error)<= epsilon)
 8 
 9 {
10 
11   beta=1;
12 
13 }
14 
15 return beta;
16 
17 }

1)位置型PID算法实现

根据前面的分析我们可以很轻松的编写程序,只需要在编写程序时判断偏差以确定是否引入积分项就可以了。同样先定义PID对象的结构体:

 1 /*定义结构体和公用体*/
 2 
 3 typedef struct
 4 
 5 {
 6 
 7   float setpoint;       //设定值
 8 
 9   float proportiongain;     //比例系数
10 
11   float integralgain;      //积分系数
12 
13   float derivativegain;    //微分系数
14 
15   float lasterror;     //前一拍偏差
16 
17   float result; //输出值
18 
19   float integral;//积分值
20 
21   float epsilon; //偏差检测阈值
22 
23 }PID;

接下来实现PID控制器:

 1 void PIDRegulation(PID *vPID, float processValue)
 2 
 3 {
 4 
 5   float thisError;
 6 
 7   thisError=vPID->setpoint-processValue;
 8 
 9   vPID->integral+=thisError;
10 
11   uint16_t beta= BetaGeneration(error, vPID->epsilon);
12 
13   if(beta>0)
14 
15 {
16 
17   vPID->result=vPID->proportiongain*thisError+vPID->derivativegain*(thisError-vPID->lasterror);
18 
19 }
20 
21 else
22 
23 {
24 
25 vPID->result=vPID->proportiongain*thisError+vPID->integralgain*vPID->integral+vPID->derivativegain*(thisError-vPID->lasterror);
26 
27 }
28 
29  
30 
31   vPID->lasterror=thisError;
32 
33 }

与普通的PID算法的区别就是上述代码中增加了偏差判断,来决定积分项的分离与否。

2)增量型PID算法实现

对于增量型PID控制,我们也可以采取相同的处理。首先定义PID对象的结构体:

 1 /*定义结构体和公用体*/
 2 
 3 typedef struct
 4 
 5 {
 6 
 7   float setpoint;       //设定值
 8 
 9   float proportiongain;     //比例系数
10 
11   float integralgain;      //积分系数
12 
13   float derivativegain;    //微分系数
14 
15   float lasterror;     //前一拍偏差
16 
17   float preerror;     //前两拍偏差
18 
19   float deadband;     //死区
20 
21   float result; //输出值
22 
23   float epsilon; //偏差检测阈值
24 
25 }PID;

接下来实现PID控制器:

 1 void PIDRegulation(PID *vPID, float processValue)
 2 
 3 {
 4 
 5   float thisError;
 6 
 7   float increment;
 8 
 9   float pError,dError,iError;
10 
11  
12 
13   thisError=vPID->setpoint-processValue; //得到偏差值
14 
15   pError=thisError-vPID->lasterror;
16 
17   iError=thisError;
18 
19   dError=thisError-2*(vPID->lasterror)+vPID->preerror;
20 
21   uint16_t beta= BetaGeneration(error, vPID->epsilon);
22 
23   if(beta>0)
24 
25 {
26 
27 increment=vPID->proportiongain*pError+vPID->derivativegain*dError;   //增量计算
28 
29 }
30 
31 else
32 
33 {
34 
35 increment=vPID->proportiongain*pError+vPID->integralgain*iError+vPID->derivativegain*dError;   //增量计算
36 
37 }
38 
39   vPID->preerror=vPID->lasterror;  //存放偏差用于下次运算
40 
41   vPID->lasterror=thisError;
42 
43   vPID->result+=increment;
44 
45 }

这就实现了增量型PID控制器积分分离算法,也没有考虑任何的干扰条件,仅仅只是对数学公式的计算机语言化。

3、总结

积分分离算法的思想非常简单。当然,对于β的取值,很多人提出了改进措施,例如分多段取值,设定多个阈值ε1、ε2、ε3、ε4等,不过这些阈值也需要根据实际的系统来设定。除了分段取值外,甚至也有采用函数关系来获取β值。当然,这样处理后就不再是简单的积分分离了,特别是在增量型算法中,实际上已经演变为一种变积分算法了。已经偏离了积分分离算法的设计思想,在后面我们会进一步说明。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4761

    浏览量

    97167
  • PID控制器
    +关注

    关注

    2

    文章

    173

    浏览量

    19585
  • PD控制器
    +关注

    关注

    0

    文章

    37

    浏览量

    16857
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    请问如何优化PID控制器的参数以实现快速响应和减少超调?

    PID控制器在电机控制中起着关键作用。如何根据电机的特性和应用需求调整PID控制器的参数(如比例系数、
    发表于 12-08 06:15

    怎样理解变频内置PID控制参数的含义

    应用三个维度展开分析。 一、PID控制的基本原理与变频实现 PID(比例-积分-微分)控制是一
    的头像 发表于 12-06 07:39 1076次阅读

    Aerodiode高带宽激光锁定PID控制器

    PID-C型激光锁定PID控制器专为实现宽达30MHz控制带宽内的最低噪声水平而设计。该设备采用触屏控制(无需电脑)的模块化设计,集成了
    的头像 发表于 10-22 07:48 176次阅读
    Aerodiode高带宽激光锁定<b class='flag-5'>PID</b><b class='flag-5'>控制器</b>

    CW32电机控制基础——PID控制原理

    将偏差的比例(Proportion)、积分(Integral)和微分(Differential)通过线性组合构成控制量,用这一控制量对被控对象进行控制,这样的
    的头像 发表于 09-30 11:44 2093次阅读
    CW32电机<b class='flag-5'>控制</b>基础——<b class='flag-5'>PID</b><b class='flag-5'>控制</b>原理

    PID控制算法学习笔记资料

    用于新手学习PID控制算法
    发表于 08-12 16:22 7次下载

    改进粒子群算法的永磁同步电机PID控制器

    较好的输出增益,振荡较小,抗干扰能力较强。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:改进粒子群算法的永磁同步电机PID控制器.pdf【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品
    发表于 05-28 15:44

    改进的BP网络PID控制器在无刷直流电机中的应用

    通过分析学习速率对BP算法的影响,提出一种分层调整学习速率的改进BP 网络算法,并把该方法设计成 PID控制器应用在无刷直流电机控制系统中,
    发表于 05-28 15:42

    限时免积分下载:增量式与位置式PID算法的C语言实现分享

    前面咱们有分享对PID算法离散化和增量式PID算法原理进行来探索,之后又使用Matlab进行了仿真实验,对PID三个参数又有了更深入的认识,
    发表于 03-05 18:32

    用硬件电路去实现PID控制

    PID是一种非常经典控制方法,该方法被广泛的应用在工业领域,通常PID算法是通过对希望控制的模
    的头像 发表于 03-03 19:33 1958次阅读
    用硬件电路去实现<b class='flag-5'>PID</b>的<b class='flag-5'>控制</b>

    PID控制详解(可下载)

    ,尤其适用于可建立精确数学模型的确定性控制系 统。 在工程实际中,应用最为广泛的调节控制规律为比例、积分、微分控制,简称
    发表于 02-27 15:42 6次下载

    资料免费下!PID电机控制系统(控制原理+控制算法+程序范例)

    原理延伸到位置式和增量式的PID算法,以及控制器参数整定的三大方法,全面解析PID的用法和特点,并通过程序的流程和说明让读者轻松可以进行实战练习,并附赠大量程序范例给读者测试与参考。
    发表于 02-27 14:17

    PID发展趋势分析

    摘要:文档中简要回顾了 PID 控制器的发展历程,综述了 PID 控制的基础理论。对 PID 控制
    发表于 02-26 15:27

    PID控制算法的C语言实现:PID算法原理

    的是,在我所接触的控制算法当中,PID 控制算法又是最简单,最能体现反馈思想的控制
    发表于 02-26 15:24

    PID控制器介绍

    PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。比例(P)调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少 偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统
    发表于 02-26 15:14

    比例谐振(PR)控制器的学习过程记录

    控制器就是比例微分积分(Proportion Integration Differentiation,PID)控制器了。然而,在交流系统中,PID
    的头像 发表于 01-20 10:46 1975次阅读
    比例谐振(PR)<b class='flag-5'>控制器</b>的学习过程记录