0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谷歌采用GANs与神经网络打造图像压缩新算法

中科院长春光机所 来源:雪球 作者:雪球 2020-09-14 09:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

还在为图像加载犯愁吗? 最新的好消息是,谷歌团队采用了一种GANs与基于神经网络的压缩算法相结合的图像压缩方式HiFiC,在码率高度压缩的情况下,仍能对图像高保真还原。

GAN(Generative Adversarial Networks,生成式对抗网络)顾名思义,系统让两个神经网络相互「磨炼」,一个神经网络负责生成接近真实的数据,另一个神经网络负责区分真实数据与生成的数据。

简单来说,就是一个神经网络「造假」,另一个神经网络「打假」,而当系统达到平衡时,生成的数据看起来便会非常接近真实数据,达到「以假乱真」的效果。

下面是这种算法展现出来的图像与JPG格式图像的对比。 可见,在图像大小接近的情况下(HiFiC大小74kB,JPG图像大小78kB),算法所展现出来的图像压缩效果要好得多。

而在与原图进行对比时,HiFiC所展现出来的还原效果仍然非常优秀。(真的不是在原图中间画了条线吗?)

目前处于特殊时期,大量国外网友仍在家中隔离,Netflix和油管的播放量暴增,一些视频网站甚至不得不被迫降低视频在线播放的清晰度,以适应激增的数据量。

但看惯了高清视频的网友们,面对突如其来的「模糊打击」自然怨声载道。

用一位网友的话来说,如果视频行业也能被应用类似的技术,相信Netflix和油管会特别高兴,毕竟这种高清低码率的图像复原实在太诱惑。

哇,如果他们可以对视频做同样的事情的话,我相信Netflix和YouTube会很高兴的。

事实上,在了解HiFiC算法的原理后,会发现它的确不难实现。

接近原图的图像重构算法

此前,相关研究已有采用神经网络进行图像压缩的算法,而随着近年来生成式对抗网络兴起,采用GANs生成以假乱真图像的算法也不在少数。

如果能有办法将二者结合,图像压缩的效果是不是会更好、更接近于人类的感知?

这次图像压缩的模型便是基于二者的特性设计,在基于神经网络的压缩图像算法基础上,采用GANs进一步让生成的图片更接近于人类视觉,在图像大小和视觉感知间达到一个平衡。

可以看见,HiFiC的架构被分成了4个主要部分,其中E为编码器,G为生成器,D为判别器,而P则是E的输出E(x)的概率模型(这里用y表示),也就是P用于模拟y的概率分布。

GANs运作的核心思想在于,需要让架构中的生成器G通过某种方法,「欺骗」判别器D判定样本为真。

而概率模型P,则是达成这步操作的条件。

然后,将E、G、P参数化为卷积神经网络,这样就可以通过率失真优化的条件,对这些网络进行共同训练。

同时,研究者也对已有的几种GANs算法架构进行了微调,使其更适于HiFiC架构。

研究发现,将GANs与深度学习相结合的HiFiC算法取得了意想不到的效果。

模型评估

下图是采用目前几种主流图像质量评估标准,对几种前沿的图像压缩算法与HiFiC算法进行比较的结果。

在图中,评估标准后面自带的箭头,表示数据更低(↓)或数据更高(↑)表示图像质量更好。

为了更好地对比,结果分别采用了HiFiC算法(图中红点连线)、不带GANs的对比算法(图中橙方连线)、目前较为前沿的M&S算法(图中蓝方连线)和BPG算法(图中蓝点连线)。

从结果来看,HiFiC算法在FID、KID、NIQE、LPIPS几种评估标准均为最优,而在MS-SSIM和PSNR标准中表现一般。

由评估标准间的差异可见,各项图像质量标准不一定是判断压缩技术的最好办法。

用户评测对比

毕竟,图像是用来看的,最终的判断权还得交回用户手里。

图像究竟是否「清晰」,某种程度上得通过人眼的判断来决定。

出于这个考虑,团队采取了调研模式,让一部分志愿者参与算法的比较。

他们先展示一张测试图片的随机裁切图样,当志愿者对其中某张裁切图样感兴趣时,便用这一部分来进行所有算法的对比。

志愿者将原图与经过算法处理后的图像对比后,选出他们认为「视觉上」更接近于原图的压缩算法。

在所有算法经过选取后,将会出现一个排名,以衡量HiFiC的实际效果。(其中,HiFiC的角标Hi、Mi和Lo分别为设置由高至低3种不同码率阈值时的算法)

上图中,评分越低,则代表图像在用户眼中「越清晰」。从图中来看,HiFiC(Mi)在0.237bpp的压缩效果下,甚至比两倍码率的0.504bpp的BPG算法在用户眼里还要更好。

即使压缩效果达到了0.120bpp,也比0.390bpp的BPG算法更好。

这项研究再次推动了图像压缩技术的发展,正如网友所说,随着图像压缩技术的发展,在线看4k电影也许真能实现。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6244

    浏览量

    110250
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106786
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型将图像作为输入,通过卷积和池化
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的
    的头像 发表于 09-28 10:03 689次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    神经网络专家系统在电机故障诊断中的应用

    的诊断误差。仿真结果验证了该算法的有效性。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:神经网络专家系统在电机故障诊断中的应用.pdf【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版
    发表于 06-16 22:09

    神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据怎么查看?

    无法观察神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据
    发表于 03-06 07:10

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不
    的头像 发表于 02-12 16:41 1252次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1305次阅读

    如何优化BP神经网络的学习率

    训练过程中发生震荡,甚至无法收敛到最优解;而过小的学习率则会使模型收敛速度缓慢,容易陷入局部最优解。因此,正确设置和调整学习率对于训练高效、准确的神经网络模型至关重要。 二、学习率优化算法 梯度下降法及其变种 : 标准梯
    的头像 发表于 02-12 15:51 1421次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1570次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播
    的头像 发表于 02-12 15:18 1273次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1339次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1514次阅读

    BP神经网络图像识别中的应用

    BP神经网络图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络图像识别中应
    的头像 发表于 02-12 15:12 1185次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2243次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法